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A B S T R A C T

Dead time losses in neutron detection, caused by both the detector and the electronics dead time, is a highly
nonlinear effect, known to create high biasing in physical experiments as the power grows over a certain
threshold, up to total saturation of the detector system. Analytic modeling of the dead time losses is a highly
complicated task due to the different nature of the dead time in the different components of the monitoring
system (e.g., paralyzing vs. non paralyzing), and the stochastic nature of the fission chains. In the present study,
a new technique is introduced for dead time corrections on the sampled Count Per Second (CPS), based on
backward extrapolation of the losses, created by increasingly growing artificially imposed dead time on the data,
back to zero. The method has been implemented on actual neutron noise measurements carried out in the
MINERVE zero power reactor, demonstrating high accuracy (of 1–2%) in restoring the corrected count rate.

1. Introduction

Dead time effect in neutron detections, caused by both the detector
and the electronics dead time, is a highly nonlinear effect, known to
create high biasing in physical experiments as the power, and hence the
count rate, grows over a certain threshold [1,2]. For sufficiently high
power, the system might be totally saturated, but even in low power
levels (as demonstrated in this paper), loses might reach up to 30%.

Analyzing neutron detector readings is perhaps one of the most
basic aspects in nuclear engineering. The detector count rate is a basic
observable of a nuclear core, and is used both when operating the
reactor (approach to criticality experiments, the regulation system, the
SCRAM system, etc.) and when conducting in-pile experiments.
Therefore, quantification of the dead time losses is of utmost impor-
tance in reactor monitoring and in-pile experiments.

Mathematical modeling the dead time losses is a highly complicated
task due to different nature of the dead time in the various components
of the monitoring system (e.g., paralyzing vs. non paralyzing), as well
as the stochastic nature of the fission chains and the variance in the
dead time itself (which might not be constant). Although analytic
treatment of the dead time effect was largely studied, from early works
[3,4] up to very recent studies [5,6], a full analytic treatment is still not
available. Therefore, most applicable models depend on phenomen-
ological models, where the empirical data is typically fitted on
exponential models [7–9].

In the present study, a new method is introduced, referred to as the

Backward EXtrapolation method (BEX), to evaluate the dead time
correction of neutron Counts Per Second (CPS) rate in nuclear reactors
(and specifically, in the context of reactor monitoring). The method was
originally suggested for dead time correction in Neutron Multiplicity
Counting (NMC) [10], but to the best of our knowledge, was never
implemented in reactor monitoring. While the theoretical background
for the method in both NMC and reactor monitoring is very much the
same, the two are characterized by (typically) very different count rates:
the count rate in reactor monitoring is often several orders of
magnitude higher than the expected count rate in NMC.

The method described in the present study has one very interesting
and unique feature that distinguishes it from most existing methods: it
does not assume a-priory any knowledge on the functional dependence
between the duration of the dead time and the count loss (or,
equivalently, the correction).

The performance of the method are demonstrated and evaluated by
implementing it to a set of seven measurements, corresponding to
seven different power levels, performed in the MINERVE zero power
reactor [11,12] during June 2015. A very good correspondence exists
between the results obtained using the BEX method and the empirical
results.

Although, as argued later, the method preforms respectively good in
the experiments analyzed, the data set is fairly restricted; the power
levels are relatively low (0.2–80 W), count rates are between 5.50×104

to 1.64×106 cps, the maximal estimated dead time losses are bounded
by 31%, and all measurements were taken on the same critical
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configuration. Therefore, although the proposed scheme is referred to
as a “method”, it should be clear that the purpose of this study, at this
point, is to form a proof of feasibility for the method, and further
validation should be conducted before the method can be claimed
operational.

The paper is arranged in the following manner: Some relevant
theoretical considerations on dead time losses are introduced in
Section 2. The BEX method is described in full details in Section 3.
Sections 4 and 5 describe the experimental results obtained using the
method. Section 6 holds a discussion on the uncertainty analysis of the
introduced method and the conclusions are given in Section 7.

2. Theory of different dead time models

2.1. Dead time definition

The term dead time, in the present context, comes to describe a
time period after a detection, in which the acquisition system is not
operational. By acquisition system we refer to both the physical and the
electronic components. In other word, a neutron arriving at the
detector during the dead time will not be recorded. In the literature,
two distinctions are considered regarding the nature of the dead time:
constant vs. varying and paralyzing vs. non paralyzing [5]. In the first
distinction, one separates between a dead time of a fixed duration and a
dead time whose duration is a random variable. The second distinction
regards the following question: if a neutron arrives to the detector
while the detection system is down due to a dead time inflicted by a
previous detection, will it once again inflict a dead time, extending the
duration in which the system is down?

To demonstrate this point, we refer the reader to Fig. 1. Each point
indicates an arrival time of a neutron to a detection system character-
ized by a dead time τ. Clearly, the second neutron arriving (indicated by
the green dot) will not be recorded, but what about the third neutron
(indicated by the black dot)? In the non paralyzing model, the fact that
the second neutron arrival was “shielded” implies that as far as the
acquisition system is concerned, it never existed, and thus the third
detection (indicated by the black dot) is recorded. In the paralyzing
model, the second arrival - recorded or not - will inflict a dead time τ
and the third detection is not recorded. The term “paralyzing” for
describing the second model reflects the fact that in a paralyzing
setting, once a certain threshold is met, further increase in the reactor
power results in a decrease of the detection rate, up until the
acquisition system is totally saturated with no recordings at all.

From a physical point of view, the nature of the dead time is
determined by the component creating the dead time. Typically, dead
time due to the electronic registration system is considered to be non
paralyzing, while dead time created by the physical process in the
detector is often paralyzing. Since the detection mechanism must have
both, the true nature of the dead time is not strictly paralyzing or non
paralyzing, but actually a combination of the two.

2.2. Why is it so difficult do model the dead time?

Most of the well known models for reactor kinetics, from the time
dependent Boltzmann transport equation to the point reactor kinetic
equations, are deterministic. As such, they consider the neutron
population size or the detection rate in a time interval as a determi-

nistic function of time, whereas physically both are random variable.
The stochastic nature of the detection signal originates from both the
probabilistic properties of nuclear interactions and the statistical
nature of the detection process.

In a more formal approach, consider a detection signal

D t t t t t t= ( , ,…, ... , ,…, ... , ), < ,T i n i i1 2 +1 (1)

describing the detection times in a nuclear system during an interval of
duration T. DT is, in fact, a single realization of a random process,
which depends on many parameters characterizing the nuclear system,
among them is the dead time τ. Since the present study focuses on the
dead time and the detection rate (counts per second - CPS), the random
process is denoted by X(T, τ).

The measured CPS, given by n/T, is a sampling of the average count
rate in the random process X(T, τ). The average losses due to a dead
time τ, which are defined by some functional form f (τ), depend of
course on the average CPS. Moreover, the average losses are also
strongly dependent on temporal correlations between the detections.
For instance, in a marginally subcritical system exposed to a weak
neutron source, detections typically tend to be concentrated in dense
bursts [13] and the dead time effect is enhanced compared to a system
characterized by random uncorrelated detections. Consequently, an
analytic model for the dead time effect must be a stochastic model.

Typically, most stochastic models of the count distribution (neglect-
ing dead time effect) are based on the construction of a differential
model for the so called probability generating function [14]. These
models were previously extended to incorporate the dead time effect
[6,15] but in an extremely limited setting, since differential models,
whose solutions are uniquely determined by the initial conditions, can
only model Markovian processes, whereas the effect of the dead time is
not Markovian.

The dead time is a non Markovian effect because in the context of
differential models, the state of the system at time t is defined by the
size of the neutron population at time t and the number of detections at
time t. However, in order to account for dead time effect, the model
must “remember” when the previous detection was recorded. In fact, in
a non paralyzing setting, the model must have recollection of all arrival
times up until t. Accounting for such “memory” effects is typically done
by using integral models. This approach was used in [5], where the so
called integral master equation was derived. However, the high
complexity of the integral model dramatically limits the results and
raises extreme difficulties in obtaining any explicit formula for the
count rate distribution.

Nonetheless, although explicit analytic results obtained so far do
not have any real implementation in full reactor settings (all the studies
referenced above were done in the setting of neutron multiplicity
counting, and, to the best of our knowledge, were never implemented
in nuclear reactor cores, experimental or operational), they do provide
a piece of very important information: the functional form of the
average count losses, i.e., f (τ), is an analytic function with respect to τ.
From a theoretical point of view, this is the only assumption used in the
BEX method.

3. The backward extrapolation method

3.1. Description of the BEX method

The basic idea in the Backward EXtrapolation (BEX) method is to
construct the function describing the reduction in CPS due to the dead
time effect, by artificially imposing a growing dead time on the signal,
and then extrapolate the resulting function back to zero.

As before, the CPS in a system with a dead time τ is denoted by f (τ),
the actual measured CPS by CPS0, and the actual dead time (which
might be unknown) by τ0.

Looking at the detection signal DT measured (or observed) on an
interval of duration T (Eq. (1)), the measured sample average CPS,

Fig. 1. Paralyzing vs. non paralyzing dead time. In the non paralyzing model, the third
detection (indicated by the black dot) is recorded, whereas in the paralyzing model it is
not.
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T
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is a sampling of f (τ0). Notice that for every dead time τ≥τ0, f (τ) can
be explicitly sampled from the measured data DT by eliminating all
detections tj such that tj − tj−1 < τ. In a non paralyzing dead time the
procedure is a bit more complicated but still rather straightforward.
For instance, one option for imposing non paralyzing dead time is to
successively progress from one detection to the next, and at each point
decide if the detection is shielded, by considering both the duration
between the detections, and whether the first detection of the two was
recorded.

These procedures of artificially imposing dead time on the mea-
sured data may be repeated for a series of increasing values of τ≥τ0.
Clearly, for every τ≤τ0, f (τ) can not be evaluated by artificially
imposing dead time, since imposing a dead time shorter that the actual
dead time would not have any effect on the CPS. At this point, the
resulting sampled f (τ) can be fitted with any chosen model on all
sampled points of f (τ) (for τ≥τ0) and extrapolate the fit back to zero,
i.e., τ → 0. This procedure enable the evaluation of the corrected CPS,
i.e., CPS(τ → 0), given by

f lim f τ(0) = ( )
τ→∞ (3)

Fig. 2 describes the full implementation of the method on an actual
measurement taken at the MIN- ERVE reactor at power level of 80( ±
3%) W, producing 1.6461×106 CPS. The x-axis describes the value of
the induced dead time τ and the y-axis the measured CPS. A cutoff at
τ= τ0 =150 ± 10 ns is clearly observed, indicating this is the dead time
of the system during the signal measurements. The blue dots represent
the resulting CPS after artificially imposing dead time on the measured
signal and the red curve represents a fourth degree polynomial fitted on
the data for τ > τ0 (since all points are, in fact, the same measurement, a
non weighted fit was executed). The red curve is an actual realization of
the theoretical CPS function f (τ). Thus, the corrected CPS is obtained
by extrapolating f (τ) backwards to τ → 0 and is given by the bisection
between f (τ) and the y-axis (purple dot in Fig. 2). The choice of a very
general fit model, i.e., a fourth degree polynomial, is arbitrary,
manifesting two facts mentioned earlier in the paper: first, the
assumption that f (τ) is analytic, and second, that no prior knowledge
on f (τ) is needed.

3.2. Implementation of the BEX method with different dead time
models

The procedure described above can be implemented using any
model for the dead time. However, when implementing the method
with a non paralyzing dead dime, a certain deviation is expected, due to
the fact that under certain circumstances, some unrecorded detection

events should be “revived”. To demonstrate this point, the reader is
referred to Fig. 3.

Consider three neutrons arriving consecutively to the detector at
times t1 (red dot), t2 (green dot), and t3 (black dot), in a system with
real dead time τ0. According to the definition of dead time, the
detection at t3 is not recorded. Now, assume a non paralyzing dead
time τ > τ0 is artificially imposed on the data, as shown in Fig. 3. Now,
the arrival at t2 should be deleted, but since a non paralyzing model use
assumed, the arrival at t3 should be “revived”, which is impossible since
it was never recorded.

On the other hand, this is a “local” effect in the sense that once the
imposed dead time is large enough, it will cover the detection in t3
anyway, and the imposed dead time will once again be valid (with
respect to the three detections in Fig. 3). Generally, the larger the
imposed dead time with respect to the actual one, the smaller the
expected deviation due to un-revivable detections is.

The implantation of the BEX method on the exact same measure-
ment used in Fig. 2 with both paralyzing and non paralyzing dead time
is shown in Fig. 4. The corrected CPS are 2.1727×106 s−1 and 2.0579
×106 s−1, respectively, showing a 5% discrepancy in the corrected CPS.
As stated earlier, implementation of the non paralyzing model is bound
to give a bias in the corrected CPS, but quantifying it is beyond the
scope of this paper. Therefore, it should be clear that implementation
of the BEX method in a non paralyzing dead time setting, at this point,
is questionable.

4. Experimental results

4.1. Experimental setting

In order to validate the BEX method, a set of seven measurements
was performed in the MINERVE reactor, differing only in the power
level of the reactor. The MINERVE reactor, a part of the CEA
Cadarache Center, is a light water moderated zero power reactor
(ZPR), dedicated mainly to nuclear data experimental validation using

Fig. 2. Full implementation of the BEX method on actual neutron detection signal
measured at the MINERVE reactor at power level of 80 W. The dead time of the system
during the measurement is clearly observed at τ=150 ns.

Fig. 3. Artificially imposing non paralyzing dead time τ > τ0 on the detection signal is
expected to result in certain deviation due to the need to “revive” unrecorded detections.
See text for more details.
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Fig. 4. Implementation of the BEX method on a detection signal from the MINERVE
reactor, at 80 W, using both paralyzing and non paralyzing dead time models.
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a variety of experimental techniques [11].
The experiment was performed in the framework of a tripartite

collaboration between CEA, Ben-Gurion University of the Negev (BGU)
and the Israel Atomic Energy Commission (IAEC) utilizing the core
configu- ration of the MAESTRO-SL experimental program. The
experiment detailed here was performed alongside another, different,
oscillation measurement campaign using high sensitivity CEA made
miniature fission chambers [16] located at the center of the core. The
detector used was FC n◦ 2295, 8 mm in diameter with ∼10 mg of 235U.
The detector was connected to a Canberra ADS7820 amplifiers/
discriminator. This analog module converts input current pulses to
voltage and then applies a pulse discrimination based on a variable
threshold (typically 0.5 V). The output of the module is a TTL pulse
train (width approximately 50 ns, see Fig. 5). Signal acquisition was
made using a Fast-Comptec MCA-3 acquisition card. Fig. 5 below
shows the preamp output for a single neutron detection. An additional
width to the dead time is due to the amplifier/discriminator (estimated
by 50 ns) and the electronic dead time from the Fast-Comptec
acquisition card.

The measurements took place on June 3rd, 2015, in seven different
power levels: 0.2 W, 1 W, 5 W, 10 W, 20 W, 50 W and 80 W. Power
levels were measured using a calibrated fission chamber. Uncertainty
on the absolute power level is 3% and the relative uncertainty (between
the reported values in the present experiment) is 0.9%. The reactor was
critical during the measurements at each power level, each measure-
ment was about 15 min long, and no significant power drift was
recorded. Table 1 below shows the total CPS measured in each
experiment.

Generally, the neutron count rate is expected to be linear in the
power. The zero power count rate was not measured, but when fitting
the first two measurements - which are piratically zero power, and the
expected dead time losses are very small - and extrapolating to zero
power, we result with 27 cps, practically zero. There for, it is safe to
assume that the zero power detector readings are negligible and do not
create any biasing in the results. Looking at Table 1, the count rate

exhibit a clear sublinear behavior as a function of the power (plotted on
Fig. 7), indicating a major drop in the count rate due to detector dead
time. For example, the count rate in the last measurement at 80 W is
below the linear fit by 33%.

Since the count rate in the first measurement (0.2 W) is consider-
ably low, no significant dead time losses are assumed in this measure-
ment. Consequently, the linear curve connecting the origin with this
point (0.2 W, 5.5×103 s−1) is used as the “zero dead time” reference
CPS value to estimate the performance of the method.

4.2. Full implementation of the BEX method

The BEX method was implemented on each of the seven measure-
ments, using the paralyzing dead time model. The imposed artificial
dead times range from τ=25 ns up to τ=2500 ns with 25 ns increments
and the fit was done using a fourth degree polynomial function. From a
practical point of view, this means that no specific model assumptions
were made and the most general model was used. The results, both the
sampled values of f (τ) and the fit, for all seven measurements are
shown in Fig. 6. In all measurements, the smallest artificially imposed
dead time for which a drop in the count rate occurs is found to be
τ=150 ns, indicating the actual dead time τ0.

As expected, the effect of the artificially imposed dead time on the
count rate increases as the power increases, starting from 1.2% loss for
τ=2500 ns at 0.2 W and up to approximately completely paralyzed
system for the same value of τ at 80 W. In all the graphs shown in Fig. 6
the bisection of the fitted curve (red line) on the CPS axis corresponds
to the corrected value of the CPS. The results are summarized in
Table 2 and Fig. 7.

The goodness of fit was evaluated using χ Y Y τ= ∑ [ − ( )]
n i

n
i i

2 1
=1

2 ,
where n is the number of points used for fit, Y (τi) is the measured CPS
value (after artificially imposing dead time τi), and Yi is the fit value at
τi. The maximal value of χ was 0.3% (with respect to the measured
CPS) and all other values were considerably lower, i.e., less then 0.01%
(see Section 6).

The corrected CPS values exhibit an good agreement with the
reference CPS values, with a maximal error of 1.8% and an average
error of 0.7%. The uncertainty on the reference value is taken as the
relative uncertainty on between the power levels. The uncertainty on
the corrected CPS will be described in more details is Section 6.

4.3. Implementation of the BEX Method using Exponential fit

The results obtained so far show very good agreement with the
reference CPS. However, two notes are worth mentioning regarding the
fact that the data was fitted and then extrapolated back to zero using a
fourth degree polynomial. First, as a general note, a fourth degree
polynomial generally suffices to fit any monotonic function. Thus, no
physical insights into the nature of the dead time losses can be inferred
form the fit results (i.e., the polynomial coefficients). Second, the fact
that f (τ) has a finite limit as τ tends to infinity, whereas a fourth degree
polynomial does not, requires that a large number of induced dead
times is used.

In order to account for both issues, the implementation of the BEX
method was repeated, replacing the fourth degree polynomial with a
simple exponential of the form f (τ) = Ae−Λτ. Since the exponen-
tial model implies that f (τ) vanishes as τ tends to infinity, this model is
only suitable for a paralyzing dead time model. It is also worth
mentioning that this notation implies that the corrected CPS is nothing
more than the multiplicative factor A. The results are shown in Table 3
below.

According to Table 3, for total count rate below 0.5×106 s−1

(corresponding to 20 W), the difference between the two models is
negligible. As the count rate increases, we see some bias, but the results
are still very similar, with a maximal 4.9% discrepancy between the two
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Fig. 5. Pre-amplifier response to a single neutron detection.

Table 1
Total neutron count rate vs. reactor power.

power [W] CPS [×106 s−1]

0.2 0.0055 ± 1.42%
1 0.0275 ± 0.60%
5 0.1323 ± 0.28%
10 0.2618 ± 0.19%
20 0.4989 ± 0.14%
50 1.1410 ± 0.09%
80 1.6461 ± 0.08%
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Fig. 6. Implementation of the BEX method (with paralyzing dead).
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fit models, and a maximal 2.1% difference between the results of the
exponential fit model and the reference CPS. When the goodness of fit
is compared, the 4th degree polynomial exhibits favorable results, as
the relative value of χ increases to 0.6%.

5. Dead time correction factor - The N over M ratio

One of the basic notations in the theory of neutron dead time
correction is the ratio between the theoretical count rate (N) and the
actual count rate (M), referred to as the N over M ratio (or the dead
time correction factor).

The two most basic models for dead time corrections are M = N
Nτ1 +

for a non paralyzing dead time and M Ne= τN− in a paralyzing dead time
[9]. When τ is sufficiently small (i.e., τ N < < 1), both models reduce to

Nτ≈ 1 +N
M In other words, in case a proper dead time correction is

applied and N is properly approximated (recall, only M is measured),
then a linear relation should exist between N

M
and N , passing through

= 1N
M at N =0 with a slope equal to the dead time τ . Fig. 8 shows the N
over M ratio obtained by implementing the BEX method to all seven
experiments.

The aim of this section is to quantify the performance of the BEX
method using the N over M ratio. Using this ratio has two advantages
over the linear fit with the power levels: first, the y-axis is dimension-
less, offering a scale free quantification. Second, the results are
independent of the power calibration (which by itself is subjected to
uncertainties).

A very good linear fit is demonstrated in Fig. 8, with a x2 score of
x2=1.5 ×10−5. Fitting the data on a general linear mode A + BN leads
to A =1.001 ± 0.6% and B =148.9 ± 3.0% ns, showing a biasing of less
than 1% from the expected values.

6. Uncertainty analysis and error propagation

Uncertainty analysis in general is done in two steps. In the first
step, the errors in the different observables are quantified, and in the
second, the errors are propagated onto the evaluated quantity.

The outline of the present section is to address both steps in term of
the BEX method: in Section 6.1 the accuracy of the method itself is
described, whereas in Section 6.2 the error propagation is discussed
along with its effects on the performance of the method in terms of
facility operation and physical in-pile experiments.

6.1. Uncertainty quantification on the corrected CPS

Uncertainty analysis, in general, refers to three major types of
uncertainty factors: Systematic uncertainty (e.g., due to model assump-
tions), numerical uncertainty (e.g., due to numeric procedures ap-
plied), and statistical uncertainty (e.g., due to sampled values that
might have statistical variance).

Starting with the systematic error, two main assumptions are made:
First, that f (τ) can be described as a fourth degree polynomial, and
second, a paralyzing dead time. Since a fourth degree polynomial is a
very general model (especially for a monotonic function), the uncer-
tainty due to the first assumption is negligible. Next, following the
characteristics of the dead time in each component of the detection
system (as described in Section 4.1), it is safe to state that the dead
time is governed by a paralyzing model. Thus, the systematic error is
estimated to be fairly small, and the uncertainty is dominated by the
second and third factors described.

The numerical uncertainty is determined by two factors: uncer-
tainty due to discretization of the induced dead time (or the step
between two consecutive values of the induced dead time), and the fit

Table 2
Dead time corrections using the BEX method and the reference CPS (linear fit). All CPS
values are given in units of [106 s−1].

Power [W] CPS0 corrected CPS correction
[%]

reference CPS

BEX,4th order (BEX/CPS0 –
1)×100

0.2 0.0055 ± 1.4% 0.0055 ± 0.0% 0.1 –

1 0.0275 ± 0.6% 0.0277 ± 0.1% 0.4 0.0275 ± 0.9%
5 0.1323 ± 0.3% 0.1350 ± 0.3% 2.0 0.1375 ± 0.9%
10 0.2618 ± 0.2% 0.2727 ± 0.5% 4.1 0.2750 ± 0.9%
20 0.4989 ± 0.1% 0.5404 ± 0.6% 8.3 0.5501 ± 0.9%
50 1.1410 ± 0.1% 1.3865 ± 1.4% 21.5 1.3753 ± 0.9%
80 1.6461 ± 0.1% 2.1727 ± 2.1% 31.9 2.2000 ± 0.9%
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Fig. 7. Reference CPS (linear fit) and corrected CPS using the BEX method (error bars
are smaller than the markers’ size in the plot).

Table 3
Corrected CPS using the BEX method with a paralyzing dead time and an exponential fit.

Corrected CPS [×106 s−1]

Power [W] Polynomial fit Exponential fit reference CPS

0.2 0.0055 ± 0.0% 0.0055 ± 0.1% –

1 0.0277 ± 0.1% 0.0270 ± 0.1% 0.0275
5 0.1350 ± 0.3% 0.1350 ± 0.3% 0.1375
10 0.2727 ± 0.5% 0.2727 ± 0.6% 0.2750
20 0.5404 ± 0.6% 0.5407 ± 0.8% 0.5501
50 1.3865 ± 1.4% 1.4000 ± 1.5% 1.3753
80 2.1727 ± 2.1% 2.2796 ± 2.2% 2.2000
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Fig. 8. The N over M ratio obtained by the BEX method.
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process. The resolution of imposed dead time values (Δτ) has two
effects: First, in determining the “cutoff” point from which the
extrapolation should be carried out. Second, too fine resolution might
results in step-wise form of the CPS, i.e., it remains constant over two
or more consecutive dead time values. In the present study, this was
prevented by making sure that (Δτ) is large enough. Both effects can be
translated to a “horizontal shift” of the BEX interpolation function.
This, in turn, creates a vertical shift on the bisection with the y-axis,
which defines the error bar on the corrected CPS.

As to the fit process, the uncertainty can be estimated by the relative
value of χ (with respect to the CPS). The statistical uncertainty is
determined by the statistical uncertainty on the CPS (since all the
points in the BEX curve are obtained by the exact same measurement).
The uncertainty on the CPS can be estimated as the square root of the
CPS divided by the square root of the measurement time, and is
significantly smaller than than the other two factors.

The first two uncertainty factors are summarized in Table 4.
It is obvious from Table 4 that the uncertainty is dominated by the

uncertainty related to the discretiza- tion of τ. To finalize the
uncertainty quantification, recall that the uncertainty on the reference
values was estimated at about 1%. Therefore, the corrected CPS should
all be in a 3% biasing from the reference value, which is indeed the
case. To summarize, under the present parameters, the BEX method is
accurate up to 2%.

6.2. Error propagation

Once the uncertainty on the corrected CPS is determined, we turn
to analyze the error propagation onto the output of the experiment. Of
course, this analysis can not be global, and the result is highly
dependent on the actual type of experiment. Here, to demonstrate
the applicability of the BEX method to actual facility operation, the
error propagation is analyzed in an approach to criticalty experiment.

In the basic approach to criticality experiment, when the rector is
still subcritical, the CPS (here denoted by N) and the reactivity (in
natural units) are related by

N S P
ρ

≈ ×
−

d

(4)

where S is the external source intensity and Pd is the detection
efficiency of the the monitoring system (the last is valid when the
system is close to criticality and ρ≈ k−1). Approach to criticality is
achieved by extrapolating 1/N to zero. In other words, the relation in
Eq. (4) is used. For a general relation of the form ρ= f (N), the
propagation of an uncertainty in N to the uncertainty in ρ can be
estimated by the simple relation:

Δρ df
dN

N≈ Δ
(5)

Explicitly, in the present context, Δρ S P ΔN= × d N
1
2 . In a typical

ZPR, S × Pd is in the order of unity, and N is in the order of 105, which
is the factor transforming from natural units of ρ to pcm. Thus, if the
relative error in about 2% (meaning that = 0.02ΔN

N
), the propagation to

Δρ is in the order of 10 pcm. Of course, this is a very rough estimation,
and the propagation may be higher or lower. Still, as a general note, it

seems that the BEX method is suitable for dead time corrections in an
approach to criticality experiment in a typical ZPR.

7. Conclusions

In this study, the BEX method for dead time corrections in a
neutron detection system was introduced and studied. The method was
implemented on a set of seven measurements, differing only in power
level, at the MINERVE zero power reactor.

The method was implemented using two different fit models - a
fourth degree polynomial and an expo- nential fit. While the results of
both fitting models showed good correspondence with the reference
values (obtained by a linear fit), the results of the polynomial fit were
slightly better, with an average error of 0.7% and a maximal error of
1.8%. These results are consistent with the estimated uncertainty of the
method (in the present setting) of about 2%.

The differences between imposing paralyzing and non paralyzing
dead time within the BEX method were discussed and explained, and it
was shown that for the 80 W measurement the discrepancy amounts to
∼5%.

The N over M ratio was studied, once again showing favorable
results, with an estimated dead time of ns, compared to the estimated
dead time using the BEX plot of 150 ns.

Finally, while the data set was rather limited and coming from only
one experimental setting, we conclude that the robust and high-quality
performances of the method constitute sufficient proof of feasibility for
the method. Yet, the method should be further validated, using a larger
data set, covering a larger range of parameters (such as the power,
count rate, reactor types etc.) before operational implementation.
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