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ABSTRACT
Dead time losses in neutron detection, caused by both the detector and the electronics dead
time, is a highly nonlinear effect, known to create high biasing in physical experiments as the
power grows over a certain threshold. Analytic modeling of the dead time losses is a highly com-
plicated task due to the different nature of the dead time in the different components of themon-
itoring system (paralyzing vs. non-paralyzing), and the stochastic nature of the fission chains. The
most basic analyticmodels for a paralyzing dead time correction assume a non-correlated source,
resulting in an exponentialmodel for the dead time correction.While thismodel is often used and
very useful for correcting the average count rate in low count rates, it is totally impractical in noise
experiments and the so-called Feynman-α experiments. In the present study, a new technique is
introduced for dead time corrections, based on backward extrapolation of the losses, created by
imposing increasing artificial dead time on the data, back to zero. Themethod is implemented on
neutron noise measurements carried out in the MINERVE reactor, demonstrating high accuracy
in restoring the corrected values of the Feynman-Y variance-to-mean-ratio.

1. Introduction

Dead time effect in neutron detections, caused by both
the detector and the electronics dead time, is a highly
nonlinear effect, known to create high biasing in physi-
cal experiments as the power, and hence the count rate,
grows over a certain threshold [1,2]. For sufficiently
high power, the system might be totally saturated, but
even in low power levels, loses might be significant.

Analyzing neutron detector readings is perhaps one
of the most basic aspects in nuclear engineering. The
detector count rate is a basic observable of a nuclear
core and is frequently used during reactor operation
(approach to criticality experiments, the regulation sys-
tem, the SCRAM system, etc.) andwhen conducting in-
pile experiments. Therefore, quantification of the dead
time losses is of utmost importance in reactor monitor-
ing and in-pile experiments.

Mathematical modeling of dead time losses is a
highly complicated task due to different nature of the
dead time in the various components of the moni-
toring system (e.g. paralyzing vs. non-paralyzing), as
well as the stochastic nature of the fission chains and
the variance in the dead time itself (which might not
be constant). Although analytic treatment of the dead
time effect was largely studied, from early works [3,4]
up to very recent studies [5,6], a full analytic treat-
ment is still not available. Therefore, most applicable
models depend on phenomenological models, where
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the empirical data is typically fitted on exponential
models [7–9].

In the context of reactor noise experiments, such
as the Feynman-α, power spectral density measure-
ments, or Rossi-α experiments, the situation is even
more acute. The commonmodels for dead time correc-
tion are often based on a basic assumption that the wait-
ing time between consecutive detections is exponen-
tially decaying (or equivalently, that the detection times
is not correlated). This assumption, although incorrect
from a theoretical point of view, does not create large
biasing when correcting the average count rate. How-
ever, when conducting reactor noise experiments, time
correlations between consecutive detections (or equiv-
alently, the second moment or the correlation function
of the count distribution) is the main observable being
studied. Therefore, any correction scheme that assumes
that the detections are not correlated is bound to give
unfavorable results.

Current treatment of dead time corrections in the
Feynman-α method is very restricted. To the best of
our knowledge, most commonly used methods deal
with the correction of the average count rate, i.e. counts
per second (CPS). This approach adequately corrects
the first moment of the detector’s readings essentially
by multiplying the CPS by a constant scalar (larger
than unity). However, this approach does not guarantee
the adequate correction of the second moment of the
neutron count distribution, i.e. the variance of the CPS.
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In most approaches aimed at correcting the variance-
to-mean ratio of the CPS [10–14], the correction is
achieved by essentially adding a constant value to the
Feynman-Y curve so it passes through the origin in the
T–Y plane.

The outline of the present study is to introduce a
new method for correcting the Feynman-Y function to
dead time losses. The new correction method inher-
ently accounts for any higher moments of the CPS. The
method, on the one hand, is experimental by nature, but
on the other, does not demand any additional operation
or measurements. The method is a generalization of
the backward extrapolation (BEX) method, introduced
in [15], originally aimed for dead time corrections of the
average count rate.

From a theoretical point of view, the ideas in the
present study are very much the same as in [15]. On the
practical side, there is a great difference from [15]. First,
the observable we are correcting is very different and
does not depend only on the total count rate, but also on
time correlations between consecutive detections. Sec-
ond, unlike the work presented in [15], the correction
is of a function-valued observable, i.e. the Feynman-Y
curve, rather than of a scalar (the CPS). This, on the
one hand, is very likely to create higher sensitivity of the
method to the interpolation scheme, but, on the other,
offers greater flexibility in choosing the interpolation
scheme.

The performances of the method are demonstrated
and evaluated by implementing it to a set of four
different noise experiments performed in the MIN-
ERVE zero power reactor [16,17] during September
2014 in the framework of a tri-partite collaboration
betweenCEA, Ben-GurionUniversity of theNegev, and
NRCN [18,19].

The paper is arranged as follows. A brief theoreti-
cal background on detection dead time, the Feynman-α
method, and the BEX method is given in Section 2; the
implementation of the BEXmethod on the Feynman-Y
curve is described in Section 3; the experimental vali-
dation of the method is presented in Section 4; and the
conclusions are given in Section 5.

2. Theoretical background

2.1. Neutron detection dead time

The term dead time, in the present context, comes to
describe a time period after a detection, in which the
acquisition system is not operational. By acquisition
system, we refer to both the physical and the electronic
components. In other words, a neutron arriving at the
detector during the dead time will not be recorded. In
the literature, two distinctions are considered regard-
ing the nature of the dead time: constant vs. vary-
ing and paralyzing vs. non-paralyzing [5]. In the first
distinction, one separates between a dead time of a fixed

Figure . Paralyzing vs. non-paralyzing dead time. In the non-
paralyzing model, the third detection (indicated by the black
dot) is recorded, whereas in the paralyzing model it is not.

duration and a dead time whose duration is a random
variable. In this study, the dead time is considered to
be of fixed duration since the fluctuations in its dura-
tion are weak and insignificant. The second distinction
regards the following question: If a neutron arrives at
the detector while the detection system is down due
to a dead time inflicted by a previous detection, will it
once again inflict a dead time, extending the duration
in which the system is down?

To demonstrate this point, we refer the reader to
Figure 1. Each point indicates an arrival time of a neu-
tron to a detection system characterized by a dead
time τ . Clearly, the second neutron arriving will not
be recorded, but what about the third neutron? In the
non-paralyzing model, the fact that the second neutron
arrival was ‘shielded’ implies that as far as the acqui-
sition system is concerned, it never existed, and thus
the third detection is recorded. In the paralyzing model,
the second arrival, recorded or not, will inflict a dead
time τ and the third detection is not recorded. The term
‘paralyzing’ for describing the secondmodel reflects the
fact that in a paralyzing setting, once a certain thresh-
old is met, further increase in the reactor power results
in a decrease of the detection rate, up until the acqui-
sition system is totally saturated with no recordings
at all.

From a physical point of view, the nature of the dead
time is determined by the component creating it. Typi-
cally, dead time due to the electronic components of the
acquisition system is considered to be non-paralyzing,
whereas dead time created by the physical process in the
detector is often paralyzing.

Modeling the dead time effect on a reactor moni-
toring system, either operational or experimental, is a
very hard theoretical challenge for two main reasons:
first, the different dead time models are often too com-
plex to be incorporated in the current mathematical
models. Second, the actual dead time effect depends
not only on the average count rate but also on time
correlations. Therefore, a full theoretical treatment of
the dead time effect must be achieved by enforcing
the different dead time models on stochastic models of
neutron flux. Although in recent years there have been
several attempts to account for dead time effects in
stochastic models, mainly in the context of neutron
multiplicity counting (e.g. [5,6,20]), it is safe to state that
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the effect of detector dead time on the count histogram
is far from being fully understood.

2.2. Reactor noise and the Feynman-αmethod

Reactor experiments based on sampling higher
moments of the neutron count distribution or time
correlations between neutrons are often referred to as
reactor noise experiments [21]. Noticeable between the
different noise techniques is the so-called Feynman-
α method, where the variance-to-mean ratio of the
number of detections in random (or consecutive)
time windows is fitted with the so-called Feynman-Y
function.

The Feynman-α method for determining the reac-
tivity of a sub-critical assembly requires sampling the
variance and the mean of the number of detections in
consecutive (or random) time windows of duration T
(T is referred to as the ‘gate’ or ‘gate width’), for vary-
ing values of T, and then fitting the sampled values (as a
function of T) with the so-called Feynman-Y function.

Sampling the values the Feynman-Y function is typ-
ically done in the followingmanner: for a measurement
of duration Ttot, choose N sub-intervals of duration
T (T � Ttot) and define the random variable Xi as the
number of detections in the ith gate (1 � i � N) and
define

E(T ) = 1
N

N∑
i=1

Xi,

V (T ) = 1
N − 1

N∑
i=1

[Xi − E(T )]2 ,

Y (T ) = V (T )

E(T )
− 1. (1)

In itsmost primal form (single energy group, no delayed
neutrons point-wise model), the Feynman-Y function
is given by

Y (T ) = Y∞ ×
(
1 − 1 − e−αT

αT

)
, (2)

where α is the Rossi-α decay coefficient (assumed pos-
itive according to Equation (2)) and is defined by α �
−ρp/�, � is the prompt neutron generation time, and
ρp is the prompt reactivity (ρp = ρ − βeff).

Of course, Equation (2) neglects all dead time effects
on the neutron count. Since the effect of the dead time
is stronger on the second moment of the count distri-
bution, the dead time losses are easily detected by neg-
ative values of Y(T) as T approaches zero (rather than a
monotonic trend Y(T → 0) → 0) [22]. The most com-
mon correction to the Feynman-Y curve due to dead
time effect is due to Müller [1], which is achieved by
‘lifting’ the Feynman-Y curve with a factor 2Rτ , where
τ is the estimated dead time andR is the estimated count
rate. More recent treatment to dead time effect may be
found in [13,14,22].

The purpose of the present study is to propose a new
method for dead time correction on the Feynman-Y
curve.

2.3. Dead time correction using the BEXmethod

The BEX method for dead time corrections was orig-
inally introduced in the context of neutron multiplic-
ity counting [23] and was adopted and examined for
reactor monitoring in [15]. The idea behind the BEX
method is very simple: consider a detection signal

DT = (t1, t2, . . . , ti, . . . , tn), ti < ti+1, (3)

describing the detection times in a nuclear system dur-
ing an interval of duration T.DT is, in fact, a single real-
ization of a random process, which depends on many
parameters characterizing the nuclear system, among
them is the dead time of the system, which is denoted
by τ 0. Since the present study focuses on the dead time,
the random process is denoted by X(T, τ 0).

The measured CPS, given by n
T , is a sampling of the

average count rate in the random process X(T, τ ). The
average count rate (including the losses due to a dead
time τ ) has some functional form f(τ ), which depends,
of course, on the average CPS. Using this simple termi-
nology, performing a dead time correction on the CPS
is nothing more than evaluating f(0) (and the dead time
losses is nothingmore than f(0)− f(τ )). Of course, sam-
pling f(0) is impossible. On the other hand, for every
τ > τ 0, sampling f(τ ) can be achieved by artificially
‘enforcing’ a dead time τ on the detection signal DT,
simply by ‘removing’ detections which are in proximity
with the previous detection.

This procedure produces a sampling of f(τ ) for
selected values of τ > τ 0. Then, a curve is fitted to the
sampled values of f(τ ), and the resulting curve is extrap-
olated back to zero, to obtain an approximation of f(0)
(see [15] for a more detailed description).

The BEX method was tested on a set of seven mea-
surements taken at the MINERVE zero power reac-
tor, in seven different power levels, where the dead
time losses ranged between a mere 1.5% and 30%. The
method proved very accurate in correcting the CPS
within a 1% error bar from the expected value.

In the present study, a generalization of the BEX
method is described and implemented to perform dead
time corrections to the Feynman-Y curve.

3. Implementation of the BEXmethod on the
Feynman-Y curve

In this section, which is in many ways the main con-
tribution of this study, the method is described in full
detail. But before doing so, a short remark is in place; the
procedure of imposing a dead time on a detector signal
is a very simple one, and one can impose any dead time
model she/he chooses, paralyzing or non-paralyzing.
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Figure . Inducing a paralyzing dead time on the detection sig-
nal. Eachdot represents adetection. If thedurationbetween two
consecutive detections is less than thedead time, the later of the
two is removed.

On the other hand, imposing a non-paralyzing dead
time is bound to create a biasing due to the need to
‘revive’ detections that were never detected (see [15]).
For this reason, in the present study, it is assumed that
the dead time in the system is a paralyzing one. From
a practical point of view, this is a very weak restriction,
since, in most modern acquisition systems, the domi-
nant dead time is indeed paralyzing. The data used for
demonstration in this section is taken from detector 1
in EXP1 as described in Section 4.1

As before, consider a detection signal

DTtot = (t1, t2, . . . , ti, . . . , tn), ti < ti+1, (4)

describing the detection times in a nuclear system dur-
ing an interval of duration Ttot. One basic method for
sampling the Feynman-Y curve for a given gate T is to
divide the signalDTtot in toN consecutive gates of dura-
tion T (with N = Ttot/T), define Cn as the number of
detections in the nth gate, and then the sampled mean
and variance are given by

ES(T ) = 1
N

N∑
n=1

Cn,

VS(T ) = 1
N − 1

N∑
n=1

[Cn − ES(T )]2 ,

YS(T ) = VS(T )

ES(T )
− 1. (5)

The seriesCn is a realization of another randomvariable
denoted by C(T, τ ) due to its dependence, among oth-
ers, on the dead time.Hence, the sampled value ofYS(T)
is a sampling of a theoretical algebraic combination of
the first two moments of C(T, τ ), or more precisely, a
sampling of

Y (T, τ ) = E
[
C(T, τ )2

] − E [C(T, τ )]2

E [C(T, τ )]
− 1. (6)

The first thing to observe is that for every τ > τ 0,
Y(T, τ ) can be sampled from DTtot simply by removing
all detections tj such that tj − tj − 1 < τ (see Figure 2),
and then re-calculating the moments as described in
Equation (5). Clearly, if τ < τ 0, then this procedure will
be totally useless, since no detections will be removed.
On the other hand, if the procedure is repeated for a

-0.5
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,
)

0.5

4
0.1

 [s]
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Figure . A three-dimensional plot of the BEX surface Y(T, τ ).
The black dots indicate the τ  cut-off, after which the induced
dead time changes the values of the variance-to-mean ratio.
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Figure . Graphic illustration of the BEX method on a single
‘slice’of the Feynman-Y curve. The fitted curve is second-degree
one-dimensional polynomial, i.e. p + pτ + pτ

.

range of values of τ , a sampling of Y(T, τ ) in that range
can be obtained.

Next, under the very natural assumption thatY(T, τ )
is an analytic function of τ , we can estimate the values
of Y(T, 0) by fitting a 2-D surface on the sampled data
of Y(T, τ ), and extrapolate back to τ = 0. To demon-
strate the implementation of the BEX method on the
Feynman-Y curve, the reader is first referred to Figure 3.

The figure is an implementation of the BEX method
(as described above) on a measurement with dead time
τ 0 � 3 µs, showing Y(T, τ ) as a function of the gate
width T and the artificially induced dead time τ . As can
be observed, for τ � τ 0, the Feynman-Y curve does not
change until the threshold value τ = τ 0 is met (indi-
cated in Figure 3 with black solid dots). However, once
the threshold is passed, a monotonic decrease in the
Feynman-Y values can be seen. Then, taking only the
values computed for τ � τ 0, the data is fitted to a general
scheme, and then extrapolated back to zero. Figure 4
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Figure . Graphic illustration of the BEX method on the entire
Y(T, τ ) surface (rather than a single value of T). The fitted sur-
face is a fourth-degree two-dimensional polynomial, i.e. p +
pτ + pT + pτ

 + pτT + pT
 + pτ

 + pτ
T +

pτT
 + pT

 + pτ
 + pτ

T + pτ
T + pτT

 + pT
.

represents the implementation of the BEX method to
a single ‘slice’: a curve is fitted on the values of Y(T, τ )
for a fixed value of T and τ � τ 0. Then, the fitted curve
is extrapolated back to zero, and the bisection of the fit-
ted curve and the Y-axis is the corrected value of the
Feynman-Y curve. The fit on the entire Y(T, τ ) surface
(rather than a single value of T) is shown in Figure 5.

As in previous implementation of the BEX method,
once the fit process is complete, the corrected value of
the Feynman-Y curve is obtained by extrapolating back
to zero, or simply taking Y(.T|τ = 0). Graphically, the
corrected Feynman-Y curve is obtained by the bisection
of Y(T, τ ) and the T–Y plane.

4. Experimental validation

The aim of the present section is to demonstrate a full
implementation of the BEXmethod on an actual detec-
tion signal recorded at the MINERVE zero power reac-
tor (ZPR) and evaluate the performance of the method.
To evaluate the performance of themethod, the original
data recorded from the ZPR suffered a negligible dead
time (less than 100ns) andwas only used (in its entirety)
as a reference value, while the actual implementation of
the method was done on manipulated data, on which a
paralyzing dead time was inflicted.

4.1. Experimental setup

The MINERVE reactor is a pool-type (∼120 m3) reac-
tor operating at a maximum power of 100 W with a
corresponding thermal flux of 109 n/cm2 s [16]. The
core is composed of a driver zone, which includes 40
standard highly enriched MTR-type metallic uranium
alloy plate assemblies surrounded by a graphite reflec-
tor. An experimental zone, in which various UO2 or

MOX cladded fuel pins can be loaded in different lat-
tices, reproducing various neutron spectra [16,24], is
located in the center of the driver zone. During the
experimental campaign, the central experimental zone
was loaded with 770 UO2 fuel rods arranged in a reg-
ular lattice, with a pitch of 1.26 cm, representative of a
PWR spectrum. The 235U enrichment of the uranium
is 3%. A schematic drawing of the reactor geometrical
configuration during the September 2014 experiments
is shown in Figure 6.

During the measurement campaign, neutron noise
experiments were conducted in three reactor states;
one very close to critical state (not analyzed in this
study) and two different subcritical states marked as
‘EXP1’ and ‘EXP2’, with core negative reactivity of
−230 and −120 pcm, respectively, measured by pre-
calibrated rod-drop experiment [19]. The different crit-
icality states were obtained by inserting one of the four
control rods into the core. The reactor configuration
was that of the MAESTRO program [17] (see Figure 6).

Two large fission chambers with approximately 1 g
of 235U (CFUL-01, from PHOTONIS [25]) have been
installed next to the driver zone and are denoted n° 670
(near control rod B III) and n° 671 (near control rod
B II) in Figure 6. The fission chambers have a high effi-
ciency (1 cps/nv) and a small deadtime (100 ns) when
used in pulse mode. Each measurement was recorded
by both detectors, resulting in four detection signals
to be analyzed. In order to minimize flux disturbances
in the detectors during measurement, reactor critical-
ity was controlled by control rod B1, which is far from
the two detectors. During themeasurements, the power
was regulated by an automatic piloting system that
makes use of a low-efficiency rotating control rod with
cadmium sectors.

The signals were acquired using fast amplifiers (Can-
berra ADS 7820) and CEA-developed multipurpose
acquisition system X-MODE [26]. The signals were
acquired in time-stamping mode with a resolution of
25 ns. Measurements EXP1 and EXP2 have been con-
ducted at zero power with count rates around 40 and
77 kcps, respectively. With detector dead time of less
than 100 ns, dead time losses and channel shifting
errors are negligible. Each of the measurements lasted
approximately 5500 seconds.More details on the exper-
imental setup and acquisition systems can be found
in [25,27].

For each of the original signals, the Feynman-Y
curve is sampled in the interval 10−3 � T � 10−1 s, to
serve as a reference value. Then, the original data is used
to create 12 different signals. From each of the original
four signals, three new signals were created by inflicting
three different values of paralyzing dead time. A sum-
mary of all 12 signals is shown in Table 1.

The BEX procedure is implemented on each of
the 12 signals and the results are compared with the
corresponding reference signal. For the fitting scheme,
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Figure . Schematic layout of the MINERVE zero power reactor during the noise measurements campaign in September .

Table . Detector signals with inflicted dead time τ .

Signal no. Experiment Detector τ (µs) CPS reduction

 EXP  . %
 . %
 . %
  . %
 . %
 . %
 EXP  . %
 . %
 . %
  . %
 . %
 . %

a second degree polynomial is used for each value of
T. In other words, a surface fit is not used, but rather
a one-dimensional fit for each ‘slice’ of the function
Y(T, τ ) (with fixed T).

4.2. Experimental results

The results of the implementation for all 12 signals is
shown in Figures 7–10.

The first thing to notice is that for all 12 examples, the
method has successfully ‘lifted’ the Feynman-Y curve
towards the reference Feynman-Y curve (created by the

T [s]
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5% corrected
8% corrected
10% corrected

Figure . Results of the BEX method for all signals created from
the first detector in EXP.

original data). Notice that, as expected, the Feynman-Y
curve of the manipulated data, before the correction,
always obtains negative values as T approaches zero. In
corrected curves, the values are ‘lifted’ and negative val-
ues no longer appear.

One possible quantification of the ‘goodness’ of
the result is the average deviation of the fitted curve
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Figure . Results of the BEX method for all signals created from
the second detector in EXP.
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Figure . Results of the BEX method for all signals created from
the first detector in EXP.

Table . Quantification of the goodness of the cor-
rected curves (see Equation ()) for different induced
dead times, i.e. %, %, and % CPS reduction (see
Table ).

CPS reduction % % %

EXP det.  .% .% .%
det.  .% .% .%

EXP det.  .% .% .%
det.  .% .% .%

Y(Tk|τ → 0) from the reference curve Y(T), which we
can define by

eY [%] = 1
N

N∑
k=1

∣∣∣∣Y (Tk) −Y (Tk|τ → 0)
Y (Tk)

∣∣∣∣ . (7)

Results are given in Table 2 for different induced dead
times, i.e. 5%, 8%, and 10%CPS reduction (see Table 1).

As can be seen, with a single exception, the method
performed better for shorter inflicted dead times. How-
ever, Table 2 is somewhat misleading, because it does
not reveal how the deviation of the Feynman-Y curve
affects the reactivity estimation. Moreover, Figure 11
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Figure . Results of the BEXmethod for all signals created from
the second detector in EXP.

Figure . The deviation (%) of the BEX approximation from the
Feynman-Y curve with respect to the control values.

shows the deviation (in %) for all 12 signals as a func-
tion of the time gate T. As can be seen, the deviation
clearly reduces as T increases. In particular, the devi-
ation depends on the number and distribution of the
time gates.

Amore reliable quantifier for the performance of the
method is the estimated α decay constant and reactiv-
ity. For that purpose, the delayed neutron fraction was
assumed βeff = 720 pcm and the prompt neutron life-
time was assumed � = 93 µs, both with uncertainty of
2% [18,19]. Considering that the statistical uncertainty
on α due to the fit process is roughly 2.5%, the overall
propagated uncertainty on the reactivity, which is given
by �ρ = √

(�β)2 + (α��)2 + (��α)2, is approxi-
mately ±30 pcm. Table 3 gives the reactivity and esti-
mated decay constant for all 12 experiments.

The results in Table 3 indicate that the method per-
forms very well. The average difference between the
reference reactivity and the estimated reactivity (calcu-
lated using the BEXmethod) is 15 pcm, with a maximal
deviation of about 40 pcm. Since the statistical uncer-
tainty on the reactivity is estimated at 30 pcm, it is safe
to state that the method is successful.
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Table . The evaluated decay constant and reactivity using
the BEX dead time correction method. The propagated
uncertainty on the reactivity is approximately± pcm.

α (s-) ρ (pcm)

Signal no. Estimated Reference Estimated Reference

 . . − −
 . . − −
 . . − −
 . . − −
 . . − −
 . . − −
 . . − −
 . . − −
 . . − −
 . . − −
 . . − −
 . . − −

5. Conclusions

Anewmethod for performing dead time corrections on
the Feynman-Y variance-to-mean ratio is introduced.
The method is based on the simple idea of imposing
artificial dead time (of increasing durations) to con-
struct the functional dependence of the Feynman-Y
curve on the dead time and then extrapolate the func-
tion back to zero. This approach was previously used
to perform dead time corrections on the count rate,
and the present study is a natural extension to dead
time correction of higher moments of the count
distribution.

The method was implemented on a set of 12 signals,
all created from four in-pile noise experiments signal by
imposing artificial dead time.

The performances and accuracy of the method are
tested with respect to two scales: deviation from the ref-
erence Feynman-Y curve, and deviation from the ref-
erence reactivity and decay constant α. Results indi-
cate good performances and accuracy in both aspects,
with an average difference between the reference and
the BEX-estimatedα’s of 1.6% and an average difference
between the reference and the BEX-estimated reactiv-
ity of 15 pcm. Since the overall propagated statistical
uncertainty on the reactivity is about 30 pcm, it is safe to
state that for all practical purposes, themethod can suc-
cessfully reconstruct the Feynman-Y curve adequately
corrected for dead time.
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