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Abstract

Mathematical models in many fields of the physical sciences involve nonlocal terms which are formally similar to con-
volution integrals. We show that it is possible to approximate a particular class of such integrals, which by themselves are
not convolutions, as a linear combination of convolution integrals, allowing for their efficient numerical computation as an
OðN log NÞ process.
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1. Introduction

The numerical integration of convolution integrals was made very efficient by the introduction of the fast
Fourier transform algorithm [1], allowing for their evaluation as an OðN log NÞ process by the use of the con-
volution theorem [2,3]. This has led, since the mid-1960s, to a large number of applications in various areas of
the physical sciences. In particular, the integration of partial differential equations containing nonlocal integral
terms (i.e., integro-differential equations) has profited from this technique: examples include mathematical biol-
ogy [4–6], population dynamics [7,8], nonlinear optics [9–11], epidemics [12,13] and superfluidity [14,15]. There
are cases though, where the nonlocal terms appearing in the problem are not convolutions, even if formally very
similar, preventing this efficient approach.
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One particular example of such a situation, which motivated this work, is given by the integral terms
appearing in [16–19], describing a two-dimensional spatially extended dynamical model for water-vegetation
interactions in drylands. The nonlocal terms in that model are of the form
I1ðrÞ ¼
Z

D
K½r� r0; /ðr0Þ�wðr0Þdr0 ð1Þ
or
I2ðrÞ ¼
Z

D
K½r� r0; /ðrÞ�wðr0Þdr0; ð2Þ
where, in that example, w represents either a biomass density field (in the case of Eq. (1)) or a soil-water den-
sity field (in the case of Eq. (2)), and the integration is taken over a domain D (the time dependence of the
fields is omitted for convenience). The kernel function K represents in this example the effect of the root sys-
tem and was chosen as a two-dimensional Gaussian with a characteristic width /, which is a linear function of
the biomass density. This feature models the dependence of the root system extension on biomass (the larger
the biomass, the longer its roots). The scalar field I1(r) describes the consumption rate of soil water at a point r

by the biomass, whereas the field I2(r) describes the growth rate of a biomass patch at a point r. Both integrals
I1(r) and I2(r) cannot be written as convolutions due to the kernel dependence on /, which implies a depen-
dence of the kernel on either r or r 0. Similar integrals also arise in the fields of image processing [20,21] and of
nonstationary linear signal filtering [22].

In this paper, we present a fast algorithm for approximating nonlocal terms of the form of Eqs. (1) and (2)
for different kernel functions, including the examples of Exponential, Gaussian, and Lorentzian kernels, in
one, two and three dimensions. The paper is organized as follows: in Section 2 we present schematically
the algorithm with some remarks on its computational cost. Due to the heuristic approach of this section,
some aspects of the algorithm are discussed briefly, and a more detailed description is deferred to subsequent
sections. In Sections 3 and 4 we show in detail how the approximation coefficients required by the algorithm
can be computed, with a few specific examples. The accuracy which can be achieved using this algorithm and
the relevant factors controlling the error in the approximation are discussed in Section 5. In Section 6 we show
some examples of numerical performances and we conclude with some final remarks in Section 7.

2. The algorithm

Our goal is to evaluate integral terms of the form of Eq. (1) or (2), where both / and w are known scalar
fields over a D-dimensional domain D. We assume that D allows for the computation of Fourier transforms
and that the kernel function K is well defined in the sense that its integral over D converges.

Clearly, unless the dependence on / can be factored out of the kernel, in general the integrals in Eq. (1) or
(2) are not convolutions since, due to the dependence of the field / on r or r 0, K is not a function of r � r 0

alone. This prevents us from using the convolution theorem to evaluate the terms I1(r) and I2(r) trivially as
a product of two fields in Fourier space. The main idea described in this paper is to approximate the kernel,
for any value of /, as a linear superposition of instances of the same kernel, evaluated at fixed values of /. This
shifts the implicit kernel dependence on space to the linear approximation coefficients, thus enabling the eval-
uation of the integral as a linear combination of convolutions.

To be more specific, we write the following approximation to the kernel function K:
Kðs; /Þ � fKðs; /Þ �XNl

l¼1

alð/ÞKðs; /lÞ; ð3Þ
where Nl is the number of terms in the approximation, {/l} is a series of constants and al(/) are unknown
functions of /. Note that the basis functions in this expansion are given by the same kernel function we wish
to approximate, computed at fixed values of /. This is a natural choice, as it allows for an exact reproduction
of the kernel whenever / = /l (see Section 5 for more details). Since the field / depends on space, the approx-
imation coefficients, being functions of /, have an implicit dependence on space, al(/) = al[/(r)] or al(/) =
al[/(r 0)]. As we will show in Section 3, optimal coefficients al(/) can be easily computed by minimization of
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an appropriately defined error, and, as we will show in Section 4, in some cases exact closed form formulas can
be derived. The series {/l} and the number of terms used in the approximation, Nl, represent free parameters
of the approximation which should be chosen according to the distribution of / values in the specific problem:
we will discuss this issue in Section 5.

For simplicity we start our illustration with the case of Eq. (1), when / is a function of r 0. Substituting
Eq. (3) into Eq. (1) gives
I1ðrÞ �
Z

D

XNl

l¼1

alð/ÞKðr� r0; /lÞ
" #

wðr0Þdr0 ¼
XNl

l¼1

Z
D
Kðr� r0; /lÞalð/Þwðr0Þdr0; ð4Þ
which we rewrite as
I1ðrÞ �
XNl

l¼1

Z
D

flðr� r0Þglðr0Þdr0 ¼
XNl

l¼1

fl � gl; ð5Þ
where
flðr� r0Þ ¼Kðr� r0; /lÞ; glðr0Þ ¼ al½/ðr0Þ�wðr0Þ ð6Þ

and the operator ‘‘*’’ denotes a convolution of two fields over the domain D. As shown by Eq. (5), the field
I1(r) is now approximated by a sum of Nl convolutions which can be efficiently evaluated in Fourier space
thanks to the convolution theorem.

In case the field / in the kernel depends on r instead on r 0, as in Eq. (2), the resulting approximation can be
similarly written as
I2ðrÞ �
XNl

l¼1

alð/Þ
Z

D
flðr� r0Þg0lðr0Þdr0 ¼

XNl

l¼1

al½/ðrÞ�ðfl � g0lÞ; ð7Þ
where now
flðr� r0Þ ¼Kðr� r0; /lÞ; g0lðr0Þ ¼ wðr0Þ. ð8Þ

The algorithm’s different steps can be summarized as follows, using the convolution theorem for evaluating
the integrals:

Algorithm 1. Approximation of convolution integrals with space–time variant kernels:

(1) Choose Nl constants {/l};
(2) Compute the approximation coefficients al(/) as described in Section 3;
(3) Compute
I1ðrÞ �F�1
XNl

l¼1

FðflÞFðglÞ
" #

ð9Þ
or
I2ðrÞ �F�1
XNl

l¼1

alð/ÞFðflÞFðg0lÞ
" #

; ð10Þ
where the operators F and F�1 indicate a direct and inverse Fourier transform, respectively, and the
fields fl, gl and g0l are defined above.
In case the evaluation of I1(r) or I2(r) needs to be iterated, as is usually the case when the problem is time
dependent, some of the terms above need to be computed only once. In particular, since fl is simply the kernel
function evaluated at a fixed /l, its Fourier transform FðflÞ can be evaluated once for all at the beginning of
the code. In case the evaluation of the coefficients al(/) is time consuming, they can be evaluated for discret-
ized values of / once for all at the beginning.
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The computational complexity of this algorithm is of order O½NlN logðNÞ�, where N is the number of grid
points in the spatial domain of interest; This has to be compared with a complexity of OðN 2Þ if a direct, brute
force, approach is used. Since a fairly small number of terms in the approximation (Nl� N) is enough to
obtain a good approximation, as is shown in the following, the advantage for large values of N is obvious.

3. Computing the approximation coefficients

We compute optimal approximation coefficients al(/) for a kernel function Kðs; /Þ, by applying a standard
minimization procedure to a measure of the approximation error. For any given, fixed, /, we write a measure
of the error in the kernel approximation, fKðs; /Þ, as a functional of al(/) and of Nl:
F½alð/Þ;Nl� �
Z

U

Z
D

fKðs; /;NlÞ �Kðs; /Þ
h i2

dsd/; ð11Þ
where D is the physical domain and U is the domain spanned by the values of /. Having fixed Nl, we wish to
minimize the functional F½alð/Þ� with respect to all al. We use the method of variations [23,24], and define a
small variation in al(/) as al(/) + dal(/). Substituting this into Eqs. (3) and (11) and expanding up to first-
order in dal(/) gives
Fþ dF ¼
Z

U

Z
D

X
l

f½alð/Þ þ dalð/Þ�Kðs; /lÞg �Kðs; /Þ
( )2

dsd/

¼
Z

U

Z
D

X
l

alð/ÞKðs; /lÞ �Kðs; /Þ þ
X

l

dalð/ÞKðs; /lÞ
" #2

dsd/

¼
Z

U

Z
D

X
l

alð/ÞKðs; /lÞ �Kðs; /Þ
" #2

dsd/

þ 2

Z
U

Z
D

X
l

alð/ÞKðs; /lÞ �Kðs; /Þ
" # X

j

dajð/ÞKðs; /jÞ
" #

dsd/þ Oðda2Þ. ð12Þ
Hence, we obtain an expression for the variation in F with respect to variations in al
dF ¼ 2

Z
U

X
j

Z
D

X
l

alð/ÞKðs; /lÞKðs; /jÞ �Kðs; /ÞKðs; /jÞ
" #

ds

( )
dajð/Þd/

¼ 2

Z
U

X
j

X
l

Mjlalð/Þ � bjð/Þ
" #

dajð/Þd/; ð13Þ
where we defined
Mjl �
Z

D
Kðs; /jÞKðs; /lÞds; bjð/Þ �

Z
D
Kðs; /ÞKðs; /jÞds. ð14Þ
The requirement dF ¼ 0 for any dal(/) yields a set of Nl linear equations for the approximation coefficients
XNl

l¼1

Mjlalð/Þ ¼ bjð/Þ; j ¼ 1; . . . ;Nl; ð15Þ
which in some cases can be solved analytically, providing an exact, compact expression for al as a function of
/. Alternatively this linear system can be solved numerically for discrete values of /.
4. Examples for some common kernel functions

In this section we will demonstrate the method described above to compute the approximation coefficients,
applying it to some common kernel functions and deriving analytical expressions for the dependence of al on /.
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Typical shapes of the resulting approximation coefficients al(/) as a function of / are summarized in Fig. 1,
with different choices of the series {/l}. Notice the property that, whenever / = /l, then al(/l) = 1, while
aj 6¼ l(/l) = 0, which results from having used as basis functions for the approximation instances of the same
kernel we wish to approximate, computed at {/l}.

4.1. One-dimensional decaying exponential

We consider a decaying Exponential kernel in an infinite one-dimensional domain, with a characteristic
length determined by /
Fig. 1.
series
distrib
dimen
aj 6¼ l(/
Kðs; /Þ ¼ e�
jsj
/ . ð16Þ
We assume that the range of possible / values in the problems is given by / 2 U (/ > 0). We define a series
f/lg

Nl
l¼1 2 U and approximate the kernel according to Eq. (3)
e�
jsj
/ �

XNl

l¼1

alð/Þe�
jsj
/l . ð17Þ
0

1

0

1

0

1

α l
(  

)
α l

(  
)

α l
(  

)

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

α1 α2 α3 α4 α5

α1 α2 α3 α4 α5

α1 α2 α3 α4 α5

a

b

c

Typical shapes of the approximation coefficients al(/) as a function of / for three different kernels and three different choices of the
{/l}, with Nl = 5. The coefficients al(/) are shown for: (a) one-dimensional decaying Exponential kernel (Eq. (19)), with {/l}
uted according to /l � l2, (b) two-dimensional Gaussian kernel, (Eq. (23)), with {/l} distributed according to /l � 2l/2 and (c) three-
sional Lorentzian kernel (Eq. (27)), with {/l} distributed according to /l � l. Notice that whenever / = /l, al(/l) = 1, while

l) = 0. All series {/l} are distributed over the range U = [0,1] and are normalized such that /Nl
¼ 1.
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We calculate the entries Mjl and bj(/) of the linear system in Eq. (15) using Eq. (14) as follows:
Mjl ¼
Z 1

�1
e
�jsj/j e

�jsj/l ds ¼ 2
/j/l

/j þ /l
;

bjð/Þ ¼
Z 1

�1
e�
jsj
/ e
�jsj/l ds ¼ 2

//j

/þ /j
.

ð18Þ
The solution of the linear system equation (15), using these entries, yields the following analytic expression for
the approximation coefficients (see Fig. 1(a)):
alð/Þ ¼
2/

/þ /l

Y
j 6¼l

/� /j

/l � /j

/l þ /j

/þ /j
. ð19Þ
4.2. Two-dimensional Gaussian

We consider a Gaussian kernel in an infinite two-dimensional domain, with a characteristic width deter-
mined by /,
Kðs; /Þ ¼ e
�jsj

2

2/2 . ð20Þ

We assume that / 2 U (/ > 0) and define the series f/lg

Nl
l¼1 2 U. The kernel can be approximated using Eq. (3)
e
�jsj

2

2/2 �
XNl

l¼1

alð/Þe
�jsj

2

2/2
l . ð21Þ
We calculate the entries Mjl and bj(/) of the linear system in Eq. (15) using Eq. (14) as follows:
Mjl ¼
Z

D
e
�jsj

2

2/2
j e
�jsj

2

2/2
l ds ¼ 2p

Z 1

0

e
�s2

2
1

/2
j

þ 1

/2
l

� �
sds ¼ 2p

/2
j /

2
l

/2
j þ /2

l

;

bjð/Þ ¼
Z

D
e
�jsj

2

2/2 e
�jsj

2

2/2
j ds ¼ 2p

/2/2
j

/2 þ /2
j

.

ð22Þ
The solution for the linear system given in Eq. (15), using these entries yields the following analytic expression
for the approximation coefficients (see Fig. 1(b)):
alð/Þ ¼
2/2

/2 þ /2
l

Y
j 6¼l

/2 � /2
j

/2
l � /2

j

/2
l þ /2

j

/2 þ /2
j

. ð23Þ
4.3. Three-dimensional Lorentzian

We consider a Lorentzian kernel in an infinite three-dimensional domain, with a characteristic width deter-
mined by /
Kðs; /Þ ¼ 1

1þ jsj
2

/2

. ð24Þ
We assume that / 2 U (/ > 0) and define the series f/lg
Nl
l¼1 2 U. We approximate the kernel according to

Eq. (3)
1

1þ jsj
2

/2

�
XNl

l¼1

alð/Þ
1

1þ jsj
2

/2
l

. ð25Þ
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We calculate the entries Mjl and bj(/) of the linear system in Eq. (15) using Eq. (14) as follows:
Fig. 2.
(17)) a
Nl = 1
error d
Mjl ¼
Z

D

1

1þ jsj
2

/2
j

1

1þ jsj
2

/2
l

ds ¼ 4p
Z 1

0

1

1þ s2

/2
j

1

1þ s2

/2
l

s2 ds ¼ p
2

/2
j /

2
l

/j þ /l
;

bjð/Þ ¼
Z

D

1

1þ jsj
2

/2

1

1þ jsj
2

/2
j

ds ¼ p
2

/2/2
j

/þ /j

.

ð26Þ
The solution for the linear system given in Eq. (15), using the entries calculated in Eq. (26), yields the following
analytic expression for the approximation coefficients (see Fig. 1(c)):
alð/Þ ¼
2/2

/lð/þ /lÞ
Y
j 6¼l

/� /j

/l � /j

/l þ /j

/þ /j
. ð27Þ
5. Accuracy of the approximation

The accuracy which can be achieved with the algorithm described above depends on an appropriate choice
of the distribution of {/l} over U and of the number of basis function Nl. We illustrate this dependence in the
following, by considering separately: (i) the error in approximating the kernel alone using Eq. (3); (ii) the error
in approximating integrals of the form Eq. (1), compared with a direct, brute force, algorithm, in a practical
application example.

5.1. The error in the kernel approximation

We write the error in the kernel approximation (i.e., Eq. (3)) for an arbitrary / as
e2ð/; N lÞ ¼

R
D
fKðs;/; NlÞ �Kðs;/Þ
h i2

dsR
D Kðs;/Þ2 ds

; ð28Þ
where here / is regarded as an argument of the error (not a parameter) and the dependence of the error on the
parameter Nl is explicitly noted. We illustrate the dependence of the error in the kernel approximation on the
particular choice of {/l} by fixing Nl = 12 and plotting, in Fig. 2, this error as a function of / 2 U = (0,1].
The errors are shown for (a) one-dimensional Exponential kernel (Eq. (17)) and (b) two-dimensional Gaussian
kernel (Eq. (21)) using three different distributions of {/l} over U.

Fig. 2 illustrates how, for a fixed number of basis functions, an appropriate choice of the series {/l} can
lead to a highly accurate approximation of the kernel over a desired range of / values in a given problem.
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Fig. 3. Plots of the average error in the kernel approximation (Eq. (29)) as a function of Nl, for the cases of (a) one-dimensional
Exponential kernel (Eq. (17)) and (b) two-dimensional Gaussian kernel (Eq. (21)), using the same three distributions of {/l} over U as
described in the caption of Fig. 2. In this figure we used U = [0.2,1] for the evaluation of Eq. (29).
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Obviously, no universally valid choice of the distribution of {/l} over U can be given as this depends on the
particular distribution of values of / in the problem at hand. In theory, if the distribution of / in the problem
were known in advance, it would be possible to define an optimal set of /l for a given Nl, but we will not
attempt this exercise here.

In order to study the dependence of the kernel approximation accuracy on the number of basis function Nl,
we define an average error in the approximation, averaging Eq. (28) over U
2 Fo
added
include
approx
�e2ðN lÞ ¼
R

U e2ð/; NlÞd/R
U d/

. ð29Þ
Fig. 3 shows plots of this average error as a function of Nl for the cases of one-dimensional Exponential kernel
(Eq. (17)) and two-dimensional Gaussian kernel (Eq. (21)), using the three distributions of {/l} described in
the caption of Fig. 2. This plot demonstrates the performance of the algorithm, but also the importance of
choosing appropriately the distribution /l: Two of the choices of {/l}, i.e., {/l}2 � l and {/l}3 � l2 lead to
an error which decreases exponentially in a wide range of Nl whereas in the case {/l}1 � 2l/2 the error de-
creases more rapidly initially, but it reaches quite early a plateau.2

5.2. The error in the integral approximation

In the following, we explore numerically and in a practical application example, the difference between an
approximated integral, eI ðrÞ, computed using the approximation procedure described above, and an integral,
I(r), computed using an alternative, standard, brute force approach. To this purpose we define an error
between the two as
e2
I ðN lÞ ¼

R
D
eI ðr; NlÞ � IðrÞ
h i2

drR
D IðrÞ2 dr

. ð30Þ
This error is calculated for the case of Eq. (1) with a two-dimensional Gaussian kernel and for the three
different distributions of {/l} defined above. The field w(r) is taken from [17] where it represents a spatial dis-
tribution of biomass density and assumes values in the range w 2 [0, 1]. The field /(r) in this example repre-
r this particular distribution of /l, the number of values in the range U saturates for Nl > 5, with all new values in the sequence being
below the lowest limit of the range U: While in general we found that in order to have a good approximation it is necessary to

a few /l values also outside the range of /, in this case these new values have a negligible effect on the accuracy of the
imation.



Fig. 4. Three different spatial patterns of the field w: (a) spots, (b) stripes and (c) gaps and the corresponding error in the integral
approximation e2

I ðNlÞ (Eq. (30)) as a function of the number of basis functions Nl (panels (d)–(f)). The field w(r) is taken from [17], where it
represents the spatial distribution of a biomass density and assumes values over the range w 2 [0,1] (darker shades of gray represent higher
biomass density) and /(r) = 1 + w(r). The error e2

I ðNlÞ is calculated for each spatial pattern of w using a two-dimensional Gaussian kernel
and three different distributions of {/l}, defined previously in the caption of Fig. 2.
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sents the root length and is a linear function of the biomass according to /(r) = 1 + w(r), so that / 2 [1,2]. We
calculate the error defined in Eq. (30) for three different spatial patterns of biomass density shown in the upper
panels of Fig. 4: (a) spots, (b) stripes and (c) gaps (see also [25]). The domain size of these patterns is L = 6 and
the series {/l} are chosen in the range U = (0,L], with /Nl

¼ L.
All continuous fields are discretized over a 128 · 128 points grid with periodic boundary conditions. The

field eI ðrÞ is calculated according to the approximation algorithm described in Section 2, while the field I(r)
is calculated using a direct brute-force method of integration, specifically the trapezoidal rule [26], as follows:
Iðxi; yjÞ ¼ DxDy
XN=2

k;l¼�N=2

e
�½ði�kÞDx�2þ½ðj�lÞDy�2

2/ðxk ;ylÞ2 wðxk; ylÞ; i; j ¼ 1; . . . ;N ; ð31Þ
where N is the number of grid points in each direction and Dx = Dy = L/N. This expression can also be con-
sidered simply a discrete version, on a finite grid, of Eq. (1) with a Gaussian kernel.

The resulting error is plotted in panels (d)–(f) in Fig. 4 as a function of the number of basis function used in
the approximation, Nl. Note that for the choices {/l}2 and {/l}3 the error can be made arbitrarily small by
choosing a small, finite value of Nl. The error for the {/l}1 case reaches an asymptotic value as Nl � 8, for
reasons similar to those already discussed in footnote 2 for Fig. 3.

To summarize this section, Figs. 2–4 show that by tuning correctly both the number of basis functions Nl

and the distribution of the series {/l}, a highly accurate approximation can be achieved for both the kernel
function and for the integral itself over the desired range of / values in the problem. Furthermore, only a small
number of basis functions Nl� N is enough to achieve good accuracy.
6. Numerical performance of the algorithm

We demonstrate the advantage of using the approximation described in this paper by comparing the speed
of a numerical implementation of the algorithm with a direct brute force approach (see Eq. (31)). We com-
puted the single processor CPU time needed to perform one integration of integral I1 on two-dimensional
grids, ranging in resolution from 64 · 64 points up to 1024 · 1024 points, using a Gaussian kernel function,
with periodic boundary conditions and setting Nl = 16.
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Fig. 5. (a) CPU user time required to complete a single integral calculation as a function of grid size, using two different algorithms: a
direct brute-force algorithm (dashed line) and the approximation algorithm (solid line). (b) CPU user time ratio between the two
algorithms obtained as a ratio of the two curves in panel (a). The number of basis functions in these tests is Nl = 16.
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The numerical simulations were run using Fortran implementations of the algorithms, on an SGI-Altix
3700 machine with Intel Itanium2 1.3 GHz processors and 32 GB memory, running 64-bit linux OS [27]. Intel
Compilers [28] were used for compilation and the FFTW library [29] was used for the Fourier transforms. All
simulations used double precision arithmetic.

Fig. 5(a) shows the CPU user time required to complete a single calculation of the integral as a function of
the grid size, using both a direct brute-force algorithm (dashed line) and the approximation algorithm (solid
line). Fig. 5(b) shows the ratio between these two curves. Note that the speed-up obtained by using the approx-
imation algorithm with respect to the direct brute-force algorithm ranges between 103 and 105, whereas the
error in the approximation remains small.

7. Conclusions

We have illustrated a method for approximating integrals of the form of Eqs. (1) and (2) as a linear
combination of a small number of convolutions. Good accuracy can be achieved with this method, with
pronounced advantages in terms of computational complexity and, thus, speed of integration.

The coefficients required for the approximation can be easily obtained analytically or numerically. We
developed analytical solutions for the coefficients and tested the method for decaying Exponential, Gaussian
and Lorentzian kernels in one, two and three dimensions respectively; also other kernels, in arbitrary
D-dimensional domains could be explored.

We believe that the method which we present in this paper can be a useful technique for the numerical inte-
gration of nonlocal PDE’s and of integro-differential problems containing convolution integrals with space
and time variant kernels, given its efficient trade-off between speed and accuracy.
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