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Abstract In this paper, the Ronen method is developed, implemented, and applied to resolve
the neutron flux and the criticality eigenvalue in simple one-dimensional homogeneous and
heterogeneous problems. The Ronen method is based on iterative calculations of correction
factors to use in a multigroup diffusion model, where the factors are actually given by the
integral transport equation. In particular, spatially dependent diffusion constants are modified
locally in order to reproduce new estimates of the surface currents obtained by the integral
transport operator. The diffusion solver employed in this study uses finite differences, and
the transport-corrected currents are introduced into the numerical scheme as drift terms. The
corrected solutions are compared against reference results from a discrete ordinate code. The
results match well with the reference solutions, especially in the limit of fine meshes, but
slow convergence of the scalar flux is reported.

1 Introduction

Neutron transport calculations on a full-core scale can be a highly intensive computational
task. High-fidelity core design optimization or transient analyses can quickly become compu-
tationally impractical when using transport methods [1]. For example, about 1011 histories are
needed in a full-core Monte Carlo calculation to achieve a 1% accuracy on local flux/power
estimation [2]. Another problem is the huge number of variables and parameters to be stored
and used during computation, e.g., tallies, geometry, cross sections, and depletion data. A
conservative estimation of the memory needed for reasonably accurate full-core Monte Carlo
neutronic calculation is in the range of terabytes (TBs) [2]. The growing demand for high-
accuracy and high-precision full-core computations challenges not only today’s high-end
computing systems but will also challenge the near-future (e.g., Exascale) computers [1–3].

To overcome this difficulty, faster (and less accurate) multigroup neutron diffusion solvers
are frequently used [4,5]. However, future Gen-IV reactor designs are characterized by strong
heterogeneity in the core, e.g., axial and radial seed-blanket structures, as in the French
ASTRID SFR CVF design [6], challenging the accuracy of diffusion calculations. Moreover,
modern calculation schemes evolve toward so-called best-estimate codes, aiming at high
accuracy [7].
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A crucial issue in obtaining an accurate diffusion calculation is the formulation of the
diffusion coefficient [8,9]. The calculation of this parameter should be based on physical
insights from the transport equation, such that the resulting diffusion approximation can really
capture the transport phenomena of interest. Improved diffusion models obtained through
transport corrections can be divided into two main classes. The first class is based on extending
the P1 model equations (and the associated boundary conditions) along with some closure
scheme, such as the well-known SP3 approximation [10]. The second class, to which this
study belongs, is based on the re-calculation of correction factors within the multigroup
diffusion framework [11].

In this paper, the development, implementation, and qualification of the Ronen method [12]
in one-dimensional homogeneous and heterogeneous plane geometry are reported. This
method is implemented as a highly accurate multigroup neutron diffusion solver based on
novel transport corrections. The main hypothesis underlying the Ronen method is based on
iterative calculations of the multigroup diffusion coefficients driven by the solutions of the
integral transport equation [11,12].

The theoretical background is detailed in Sect. 2, the numerical implementation is
described in Sect. 3, the results are presented in Sect. 4, and conclusions are brought in Sect. 5.

2 Theoretical background

2.1 The Ronen method

In 2004, Ronen [12] suggested to derive corrected diffusion coefficients using Fick’s law and
more accurate estimations of the neutron currents by means of integral transport operators,
whereas the neutron flux is resolved by diffusion theory. Denoting the currents obtained by
integral transport as “integral currents” J tr(r, E) and the currents obtained by Fick’s law as
“diffusion currents” JD(r, E), the Ronen idea is based on changing the diffusion coefficient
such that

JD(r, E) = −D(r, E)∇φ(r, E) = J tr(r, E). (1)

Since these accurate estimates of the currents are based on a known flux distribution, it was
also suggested to execute new diffusion calculations, thus updating iteratively the diffusion
coefficients in the global calculation.

D(k+1)(r, E) = − |J (k)
tr (r, E)|

|∇φ(k)(r, E)| , (2)

where k is the iteration index. The use of a tensor notation is needed for the diffusion
coefficient in general multidimensional problems.

The motivation for this method was to overcome the inherent limitation of Fick’s law
requiring smooth flux gradients and thus small neutron absorption rate with respect to scatter-
ing in general. Nevertheless, isotropic scattering remained as a basic postulate. For example,
in a homogeneous slab with void boundary conditions, Eq. (2) takes the following form [12]

D(k+1)(x, E) = −
1

2

∫ a

0
dx ′E2[σ(E)|x − x ′|] Sgn(x − x ′)q(k)(x ′, E)

∂φ(k)(x, E)/∂x
. (3)

This idea was later used by Tomatis and Dall’Osso [11], who provided a numerical demon-
stration in a simple slab problem. Instead of updating the diffusion coefficient by the ratio
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of the current and the flux gradient, as in Fick’s law, they adopted the coarse mesh finite
difference method (CMFD) for taking into account in the diffusion solver the new currents
estimated by the integral transport operator. This technique, largely adopted in the literature of
nodal methods [4,13], can avoid indeterminate divisions in case of vanishing flux gradients.
They tested this implementation in a homogeneous bare slab using two-group cross sections
representative of a realistic PWR assembly. It was observed that the Ronen method (RM)
could drive the flux distribution away from diffusion and closer to the reference solution of
the integral Boltzmann transport equation, regardless of the initial formulation used for the
diffusion coefficient. As expected, the largest errors were located near the boundary where
the transport effects are more pronounced, but slowly decreasing even after many iterations.

2.2 The one-dimensional Peierls equation

There are several ways to derive the integral expression for the flux in slab geometry. Most
of them start with assuming homogeneous and isotropic scattering and sources, yielding the
Peierls equation [8,14–18]. The derivation of expression for slab geometry (of thickness a)
is straightforward, yielding

φ(x, E) =1

2

∫ a

0
dx ′E1

[
σ(E)|x − x ′|] Q(x ′, E), with

Q(x, E) =
∫ ∞

0
dE ′σs(E ← E ′)φ(x, E ′) + S(x, E) (4)

and E1(x) as first-order exponential integral [19]. Note that this expression does not include
the contribution of uncollided neutrons originated from an incoming angular flux at the
boundaries.

The starting point for the derivation of the integral expression for the flux in slab geometry
is to directly integrate along a line the transport equation [14,16–18]

ψ(r, Ω̂) =
∫ R

0
dR′Q(r − R′Ω̂, Ω̂)e−τ(r,r−R′Ω̂) + ψ(r − RΩ̂, Ω̂)e−τ(r,r−RΩ̂), (5)

where τ(r, r − R′Ω̂) is the optical length, defined as

τ(r, r − R′Ω̂) ≡
∫ R′

0
σ(r − R′′Ω̂)dR′. (6)

Assuming isotropic scattering and homogeneous medium in one-dimension for Eq. (5) recov-
ers Eq. (4).

In what follows, a generalization of Eq. (4) is derived for heterogeneous medium with
anisotropic scattering.

2.3 Integral expressions for the neutron flux and current

Consider an infinite slab of width a. The angular flux in the slab is given by [18]

ψ(x, E, μ) = ψ(0, E, μ)e−τ(0,x,E)/μ +
∫ x

0
dx ′ Q(x ′, E, μ)

μ
e−τ(x ′,x,E)/μ, μ > 0,

(7a)

ψ(x, E, μ) = ψ(a, E, μ)eτ(x,a,E)/μ −
∫ a

x
dx ′ Q(x ′, E, μ)

μ
eτ(x,x ′,E)/μ, μ < 0, (7b)
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where

τ(x ′, x, E) ≡ Sgn(x − x ′)
∫ x

x ′
σ(x ′′, E)dx ′′ (8)

and Q(x, E, μ) denotes total emission.
Only scattering in isotropic media is considered here: σs(∗, Ω̂

′ → Ω̂) = σs(∗, μ0)/2π

with the angle cosine μ0 = Ω̂
′ · Ω̂ . The source terms are written by moments of Legendre

polynomials after the usual expansion of the scattering cross sections in Legendre polynomials
of μ0, followed by the application of the addition theorem and by integration on spherical
harmonics using the symmetries and rotational invariance of the slab geometry [8]. The cross
sections of the source term are grouped for simplicity by introducing the l-th moments of the
production cross section [11]

σl(x, E ← E ′) = σs,l(x, E ← E ′) + δl0
χ(E)

keff
νσ f (x, E

′), (9)

with the Legendre moments of the scattering cross section

σs,l(x, E ← E ′) =
∫ 1

−1
dμ0Pl(μ0)σs(x, E ← E ′, μ0). (10)

δl0 in Eq. (9) is the Kronecker function equal to 1 only for l = 0 and zero otherwise. The
multiplication factor keff applies here on the fission production since external sources are
missing. The source term is then rewritten as

Q(x, E, μ) =
∞∑
l=0

2l + 1

2

∫ ∞

0
dE ′σs,l(x, E ← E ′)ψl(x, E

′)Pl(μ)

+ χ(E)

2keff

∫ ∞

0
dE ′νσ f (x, E

′)ψ0(x, E
′)

=
∞∑
l=0

2l + 1

2

∫ ∞

0
dE ′σl(x, E ← E ′)ψl(x, E

′)Pl(μ)

=
∞∑
l=0

2l + 1

2

∫ ∞

0
dE ′ql(x, E ← E ′)Pl(μ)

=
∞∑
l=0

2l + 1

2
ql(x, E)Pl(μ), (11)

where the source angular moments are defined as

ql(x, E) ≡
∫ ∞

0
dE ′ql(x, E ← E ′) ≡

∫ ∞

0
dE ′σl(x, E ← E ′)ψl(x, E

′)dE ′. (12)

Finally, we also expand the angular dependence of the uncollided boundary flux in a series
of orthogonal Legendre polynomials:

ψ(x, E, μ) =
∞∑
l=0

2l + 1

2
Pl(μ)ψl(x, E). (13)

This allows dealing only with flux moments at the right hand side of Eq. (9).
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The scalar flux φ+ at x resulting from neutrons coming from the left, i.e., x ′ < x (μ > 0),
is determined by substituting Eq. (13) in Eq. (7a) and integrating over the angle

φ+(x, E) ≡
∫ 1

0
dμψ(x, E, μ)

=
∞∑
l=0

2l + 1

2

{
ψl(0, E)

∫ 1

0
dμPl(μ)e−τ(0,x,E)/μ

+
∫ x

0
dx ′ql(x ′, E)

∫ 1

0
dμ

Pl(μ)

μ
e−τ(x ′,x,E)/μ

}
. (14)

In order to solve the angular integrals, we resort to the following result [20,21]

∫ 1

0
μi Pl(μ)e−y/μdμ =

[l/2]∑
m=0

hmEl+2+i−2m(y), (15)

where the coefficients hm are used to rewrite the Legendre polynomials as simple sums of
weighted monomials, like

Pl(x)=
[l/2]∑
m=0

hmx
l−2m, hm = (−1)m(2l − 2m)!

2lm!(l − m)!(l − 2m)! and [l/2] =
{
l/2, l even,

(l − 1)/2, l odd.

(16)
Hence, the contribution to the flux from x ′ < x can be written as

φ+(x) =
∞∑
l=0

2l + 1

2

[l/2]∑
m=0

hm

{
El+2−2m[τ(0, x, E)]ψl(0, E)

+
∫ x

0
dx ′El+1−2m[τ(x ′, x, E)]ql(x ′, E)

}
. (17)

The contribution to the flux from x ′ > x (μ < 0) can be calculated in a similar man-
ner, using the change of variables η = −μ for the angular integrals and the fact that
Pl(−μ) = (−1)l Pl(μ). Hence, the expression for the scalar flux which accounts for
anisotropic scattering and heterogeneous medium is

φ(x, E) =φ+(x, E) + φ−(x, E)

=
∞∑
l=0

2l + 1

2

[l/2]∑
m=0

hm

{
El+2−2m[τ(0, x, E)]ψl(0, E)

+ (−1)l El+2−2m[τ(x, a, E)]ψl(a, E) +
∫ x

0
dx ′El+1−2m[τ(x ′, x, E)]ql(x ′, E)

+ (−1)l
∫ a

x
dx ′El+1−2m[τ(x, x ′, E)]ql(x ′, E)

}
. (18)

The generalization of Eq. (18) to current is obtained in a similar procedure according to

J (x, E) =J+(x, E) − J−(x, E) =
∫ 1

0
dμμψ(x, E, μ) −

∫ −1

0
dμμψ(x, E, μ)

=
∞∑
l=0

2l + 1

2

[l/2]∑
m=0

hm

{
El+3−2m[τ(0, x, E)]ψl(0, E)
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+ (−1)l+1El+3−2m[τ(x, a, E)]ψl(a, E)

+
∫ x

0
dx ′El+2−2m[τ(x ′, x, E)]ql(x ′, E)

+ (−1)l+1
∫ a

x
dx ′El+2−2m[τ(x, x ′, E)]ql(x ′, E)

}
. (19)

3 Numerical implementation

The cross sections, as well as the diffusion coefficient, are usually available as volume-
averaged data per cell in the mesh. Once the scalar flux is known from the finite differences
solver using the original diffusion coefficients, the integral expressions derived in Sect. 2.3
can be used to get new estimates of the currents J at the cell interfaces.

Instead of computing new diffusion coefficients at the interfaces by Fick’s law, JD(x, E) =
−D(E)∂xφ(x, E), new corrective currents δ J (xs, E) = Jtr(xs, E)− JD(xs, E) are obtained
at cell interfaces xs . Here, JD(x, E) is called the “diffusion current” and is obtained using
Fick’s law, with the original values of the diffusion coefficients and with the derivative
approximated by finite differences. In one-dimensional geometry and using the notation in
Fig. 1, the diffusion current is evaluated according to

JD(xi+1/2, E) ∼= −D(xi+1/2, E)
φ(xi+1, E) − φ(xi , E)

(�xi+1 + �xi )/2
, (20)

and the corrective current is defined according to

δ J (xi+1/2, E) = −δD(xi+1/2, E)
φ(xi+1, E) + φ(xi , E)

(�xi+1 + �xi )/2
, (21)

where integer and rational subscripts indicate node-averaged and interface quantities, respec-
tively. It is Eq. (21) from which the correction factors δD are obtained. The discretized form
of the current δ J must involve the neighboring flux as well, but its representation is changed
into a drift-advection term to get rid of possible undefined division by zeros in case of flat
flux [11,13]. The so-called transport current Jtr(xs, E) is evaluated using the integral expres-
sion derived in Sect. 2.3 as described in Sect. 3.2.

The input diffusion coefficients are provided as cell averaged quantities, but they are always
needed at interfaces. Therefore, they are approximated here by local volume averages:

D(xi+1/2, E) = �xi D(xi , E) + �xi+1D(xi+1, E)

�xi + �xi+1
. (22)

3.1 The correction as a drift term

The new numerical corrections δD are obtained at the interfaces using Eq. (21) to be used
in the finite differences solver, together with the diffusive currents from Eq. (20). Hence, the
neutron balance resolved by the CMFD takes into account both types of currents JD and δ J .

. . . . . . x
−1/2

0

+1/2 i − 1/2

i

i + 1/2 I − 3/2

I − 1

I − 1/2

Fig. 1 Notation of the one-dimensional mesh
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In particular, the one-dimensional multigroup neutron balance CMFD diffusion equations
actually solved are

J+
D,g(x) + δ J+

g (x) − J−
D,g(x) − δ J−

g (x) + σgφg(x) = χg

keff

G∑
g′=1

νσ f,g′(x)φg′(x)

+
G∑

g′=1

σs,g←g′φg′(x), (23)

where J±
D,g(x) ≡ JD,g(xi±1/2).

Using the definitions in Eqs. (20)–(22) with the notation shown in Fig. 1, the discretized
form of Eq. (23) is

− 2Dg
i+1/2

φi+1,g − φi,g

�xi+1 + �xi
− 2δDg

i+1/2
φi+1,g + φi,g

(�xi+1 + �xi )
+ 2Dg

i−1/2
φi,g − φi−1,g

�xi + �xi−1

+ 2δDg
i−1/2

φi,g + φi−1,g

(�xi + �xi−1)
+ σ

g
i φi,g =

G∑
g′=1

σ
g←g′
s,i φi,g′ + χg

keff

G∑
g′=1

νσ
g′
f,iφi,g′ . (24)

Rearranging terms, one gets
(−Dg

i−1/2 + δDg
i−1/2

�xi−1 + �xi

)
φi−1,g +

[
Dg
i+1/2 − δDg

i+1/2

�xi+1 + �xi
+ Dg

i−1/2 + δDg
i−1/2

�xi + �xi−1
+ σ

g
i

2

]
φi,g

+
(−Dg

i+1/2 − δDg
i+1/2

�xi+1 + �xi

)
φi+1,g = 1

2
qi,g, (25)

where qi,g is the RHS of Eq. (24).
These equations can be formulated in operators notation according to

AΦ = 1

keff
FΦ, (26)

where A is the migration operator, whose entries are given by Eq. (25) making it a three-
diagonal banded matrix, and F is the neutron generation operator given by the second term in
qi,g (see Eqs. 24–25). Note thatA can be written asA = A0+δA distinguishing the diffusion
corrections from the constant diffusion coefficients derived from the transport problem. In
the homogeneous case, A(x) = A0 + δA(x).

3.2 Evaluation of the currents by the integral form of the transport equation

The numerical evaluation of the neutron current Jg(x) at the cell interfaces requires spatial
integration of Eq. (19). The neutron current at any interface can be calculated by considering
separately contributions from all cells which are to the left or to the right of the interface
itself. The current at a cell interface is discretized as follows

Jg(xi+1/2) =
∞∑
l=0

2l + 1

2

[l/2]∑
m=0

hm

{
Enl,m+1[τg(0, xi+1/2)]ψl,g(0)

+ (−1)l+1Enl,m+1[τg(xi+1/2, a)]ψl,g(a)
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For xj+1/2 � x′,

x
xj−1

σg,j−1 xj−1/2

xj

σg,j xj+1/2
. . .

xi−1/2

xi

σg,i xi+1/2

x′

τg
i,j

τg
i,j + σg,j xj+1/2 − x′)

For xj−1/2 � x′,

x
xi−1

σg,i−1 xi−1/2

xi

σg,i xi+1/2
. . .

xj−1/2

xj

σg,j xj+1/2

x′

τg
i,j

τg
i,j + σg,j x′ − xj−1/2

)

Fig. 2 Notation for numerical evaluation of interface currents by the integral form of the transport equation

+
i∑

j=0

ql,g, j

x j+1/2∫

x j−1/2

dx ′Enl,m [τg(x ′, xi+1/2)]

+ (−1)l+1
I−1∑
j=i+1

ql,g, j

x j+1/2∫

x j−1/2

dx ′Enl,m [τg(xi+1/2, x
′)]

}
, (27)

where nl,m ≡ l + 2 − 2m. The source ql,g, j is the l th angular moment of the volume-average
within-group source in the cell j . The optical lengths show the subscript g because they
are evaluated with the corresponding total cross section σg . Note that for void boundary
conditions, the boundary terms must vanish by definition. The spatial integrals in Eq. (27)
can be solved analytically knowing that E ′

n+1(u) = −En(u) [22]. The optical length between
the right surfaces of cell j and cell i is

τ
g
i, j ≡

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

i∑
k= j+1

σg,k�xk if i > j,

0 if i = j,
j∑

k=i+1
σg,k�xk if i < j.

(28)

The general case follows in Fig. 2.
After substitution, the integration of the Enl,m terms in Eq. (27) yields

∫ x j+1/2

x j−1/2

dx ′Enl,m [τg(x ′, xi+1/2)] = 1

σg, j

[
Enl,m+1(τ

g
i� j ) − Enl,m+1(τ

g
i� j + σg, j�x j )

]

= 1

σg, j

{
Enl,m+1

[
τg(x j+1/2, xi+1/2)

]

−Enl,m+1
[
τg(x j−1/2, xi+1/2)

]}
, (29a)
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∫ x j+1/2

x j−1/2

dx ′Enl,m [τg(xi+1/2, x
′)] = 1

σg, j

[
Enl,m+1(τ

g
i< j ) − Enl,m+1(τ

g
i< j + σg, j�x j )

]

= 1

σg, j

{
Enl,m+1

[
τg(xi+1/2, x j−1/2)

]

−Enl,m+1
[
τg(xi+1/2, x j+1/2)

]}
. (29b)

Hence, the interface currents can be written as

Jg(xi+1/2) =
∞∑
l=0

2l + 1

2

[l/2]∑
m=0

hm

{
Enl,m+1[τg(0, xi+1/2)]ψl,g(0)

+ (−1)l+1Enl,m+1[τg(xi+1/2, a)]ψl,g(a)

+
i∑

j=0

ql,g, j
σg, j

{
Enl,m+1

[
τg(x j+1/2, xi+1/2)

] − Enl,m+1
[
τg(x j−1/2, xi+1/2)

]}

+ (−1)l+1
I−1∑
j=i+1

ql,g, j
σg, j

{
Enl,m+1

[
τg(xi+1/2, x j−1/2)

]

−Enl,m+1
[
τg(xi+1/2, x j+1/2)

]} }
. (30)

Note that for the isotropic case (l = 0) Eq. (30) reduces to

Jg(xi+1/2) = 1

2

{
E3[τg(0, xi+1/2)]ψ0,g(0) − E3[τg(xi+1/2, a)]ψ0,g(a)

+
i∑

j=0

q0,g, j

σg, j

{
E3

[
τg(x j+1/2, xi+1/2)

] − E3
[
τg(x j−1/2, xi+1/2)

]}

−
I−1∑
j=i+1

q0,g, j

σg, j

{
E3

[
τg(xi+1/2, x j−1/2)

] − E3
[
τg(xi+1/2, x j+1/2)

]} }

= 1

2

{
E3[τg(0, xi+1/2)]ψ0,g(0) − E3[τg(xi+1/2, a)]ψ0,g(a)

+
I−1∑
j=0

q0,g, j

σg, j

{
E3

[
τg(x j+1/2, xi+1/2)

] −E3
[
τg(x j−1/2, xi+1/2)

]}
Sgn(i− j)

}
.

(31)

It is possible to identify in these equations transfer probabilities of neutrons emitted by the
sources ql,g, j and crossing the right interface of cell i without colliding. The quantities
Enl,m [τg(xi , x j )] allowing to compute these probabilities can be pre-calculated once and
stored in multidimensional arrays for later use.

3.3 Boundary conditions

A generalized form for the boundary condition (at the left) follows as

JD(x = 0) = −D0
φ0

�x0/2 + ζ
, (32)
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Fig. 3 A flowchart of the Ronen algorithm

where ζ is the extrapolation length in case of vacuum. The Marshak boundary conditions
are reproduced by ζ = 2D, but the more accurate value ζ ≈ 2.13D is taken to match
transport with better agreement [23]. Reflection can be reproduced by ζ → ∞, whereas
the condition of zero-flux is realized by ζ = 0. The quantity δ J at the boundary takes
the simpler form of δ J = −δD−1/2φ0, without dividing by the spatial width, since no
particular extrapolation length is appropriate for the correction. The expression for the right
boundary is straightforward, implying a nonnegative current. One should recall that the
diffusion coefficient remains constant throughout the calculation and so is the extrapolated
distance. Only δD is recalculated and the correction is actually implemented through the
currents, i.e., Jtr = JD + δ J .

3.4 The Ronen iterative scheme

The Ronen algorithm used to solve the critical eigenvalue problem in the slab is described
as follows (see Fig. 3):

1. Initialize The algorithm receives the geometry and the cross sections (XS) of the problem
as input data. At this stage, the correction factors δD(0) are set to zero and the initial
pure-diffusion operator is constructed, that is A(0) = A0. Initial guesses for the flux φ(0)

and the multiplication factor k(0)
eff are set.

2. Diffusion solver A one-dimensional multigroup diffusion solver is executed with the
migration operator A(k) = A0 + δA(k) to determine new estimates of the flux φ(k) and
of the multiplication factor k(k)

eff .
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Table 1 Two-group macroscopic cross sections [cm−1] of the homogeneous case [11]

Group g σg σs,0,g←g′ χg νσ f,g

1 5.3115 × 10−1 5.04664 × 10−1 2.03884 × 10−3 1 7.15848 × 10−3

2 1.30058 × 100 1.62955 × 10−2 1.19134 × 100 0 1.41284 × 10−1

Table 2 Reactivity differences as a function of mesh refinement using the Ronen method

dx (cm) I kref kD �ρD (pcm) kRM �ρRM (pcm)

0.43 50 0.744307 0.741417 −524 0.740552 − 681

0.215 100 0.744391 0.741355 −550 0.743447 − 171

0.1075 200 0.744412 0.741339 −557 0.744212 − 36

0.07167 300 0.744416 0.741336 −558 0.744356 − 11

0.05375 400 0.744417 0.741335 −558 0.744407 − 2

3. Convergence check Convergence is checked with the relative residuals on the flux and
on the multiplication factor between iteration k and (k−1); Ronen iterations are stopped
if the relative residuals fall within the input tolerances.

4. Estimate currents Both the diffusion current J (k)
D (Eq. 20) and the transport current J (k)

tr

(Eq. 19) are calculated using φ(k) and k(k)
eff .

5. Update correction The correction factors δD(k+1) are obtained using δ J (k) and Eq. (21)
in order to update the migration operator A(k+1) = A0 + δA(k+1) (Eq. 25), and continue
with step 2.

4 Results

Two one-dimensional test cases are considered: homogeneous and heterogeneous. The refer-
ence solutions are calculated using a Python3 discrete ordinates SN code with N = 16 [18].
The diffusion solutions and the Ronen iterations are produced using original codes in
Python3. All tolerances on relative residuals are set to 1E−6 in the iterative solving
schemes, and no (over/under)-relaxation is done. The initial diffusion coefficient is set to
D = 1/(3σtr ) = 1/(3σ) since only isotropic scattering is considered in this case. Anisotropic
scattering cases are deferred to future studies. Void boundary conditions are used at the outer
edges of the core, which are implemented for the diffusion solver in the form of a group-
dependent extrapolated distance, i.e., dg = 2.13Dg , see Sect. 3.3.

4.1 Homogeneous case

A homogeneous slab of width a = 21.5 cm is considered, with the two-group macroscopic
cross sections shown in Table 1.

Table 2 shows the reactivity differences as a function of mesh refinement using standard
diffusion (with extrapolated length) and the Ronen method. The reactivity difference is given
by (�ρ = 1/kref − 1/kD/RM) × 105 pcm, where kD and kRM are the multiplication factors
of standard diffusion and of the Ronen method, respectively. The reference kref value from
S16 is 0.744417 (I = 400).
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Fig. 4 Comparison of the fluxes as calculated by the reference SN code, the RM code, and a standard
multigroup diffusion without RM correction (D0). The insets show a zoom-in of the fluxes near the boundary.
Results shown here after 250 Ronen iterations
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Fig. 5 Deviation of the fluxes with respect to the reference solution after 250 Ronen iterations

A comparison of the fast and thermal fluxes, as calculated by the reference SN code, the
RM code, and the standard multigroup diffusion without RM correction (denoted by D0), is
shown in Fig. 4 for the half slab. The deviations (in [%]) of the RM-corrected flux and of the
standard diffusion flux from the reference SN flux are also shown in Fig. 5. The corresponding
Ronen method correction factors δD are shown in Fig. 6.

The deviation from the reference solution is decreased by the Ronen iterations from
approximately 20% near the boundary and 1% at the slab center to 2% and 0.01%, respec-
tively.

The RM correction terms (δD) along the slab are shown in Fig. 6. It is possible to
observe that the diffusion correction almost vanishes at the slab center and exhibits non-
trivial behavior near the boundary. The convergence of the flux (max deviation) and that of
the criticality eigenvalue are shown in Fig. 7, where εφ = max[φ(k) − φ(k−1))/φ(k−1)] and
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Fig. 7 Convergence of the flux (max deviation) and of the criticality eigenvalue during 1000 Ronen iterations

εk = (k(k)
eff − k(k−1)

eff )/k(k−1)
eff . While the eigenvalue converges within a few iterations, rela-

tively slow convergence is noticed for the flux with higher differences against the reference
S16 solution near the boundaries. The spatial flux convergence between two successive Ronen
iterations is shown in Fig. 8 for the left half slab, according to �φ = (φk−1 −φk)/φk−1 [%].
The spatial flux convergence of the Ronen iterations with respect to the reference solution
for the left half slab is shown in Fig. 9 instead.

Notice the change of sign in the flux convergence�φ in Fig. 8 between the center (negative)
and the boundary (positive) of the slab. The initial diffusion solution is smoother than the
transport one. Hence, it can be seen in Fig. 4 that the diffusion solution underestimates the
peak flux at the center of the slab and overestimates the flux near the boundary. The Ronen
iterations “push” the diffusion solution toward the transport one by increasing the flux level at
the center of the slab and decreasing the flux level at the boundary. Hence, φ(k−1) is smaller
at the center and higher at the boundary compared to φ(k). This effect caused by Ronen
iterations produces less smooth flux shape with steeper gradients comparing to the diffusion
solution.

4.2 Heterogeneous case

The heterogeneous benchmark defines three heterogeneous cores; each is 7 fuel assemblies
long and comprised of four different fuel assemblies made of four different materials [24], as
shown in Fig. 10. Material properties for each region of the assemblies are given in Table 3.
Configuration 1 represents the least heterogeneous core with rather smooth flux gradients.
On the contrary, configuration 3 represents the most heterogeneous core with the steepest
flux gradients and can serve as a limiting case [24]. Void boundary conditions are imposed
on both ends of the core.

Table 4 shows the reactivity differences between standard diffusion (with extrapolated
length) and the Ronen method (at increasing number of iterations) with respect to the reference
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Fig. 10 Schematic illustration of the fuel assemblies and core composition and geometry [24]

Table 3 Two-group macroscopic cross sections [cm−1] used for the heterogeneous case [24]. Colors are in
accordance with Fig. 10

Material σ1 σ2 νσ f,1 νσ f,2 σs,1←1 σs,2←1 σs,2←2 x (cm)

Water (blue) 0.1890 1.4633 0.0000 0.0000 0.1507 0.0380 1.4536 1.158

Fuel 1 (red) 0.2263 1.0119 0.0067 0.1241 0.2006 0.0161 0.9355 3.231

Fuel 2 (yellow) 0.2252 0.9915 0.0078 0.1542 0.1995 0.0156 0.9014 3.231

Fuel 3 (green) 0.2173 1.0606 0.0056 0.0187 0.1902 0.0136 0.5733 3.231

Table 4 Reactivity differences as a function of number of iterations using the Ronen method. 728 nodes

Method Core 1 Core 2 Core 3

keff �ρ (pcm) keff �ρ (pcm) keff �ρ (pcm)

S16 1.25614 – 1.00094 – 0.79878 –

Diffusion 1.25902 182 0.99325 −773 0.77805 −3335

RM-10 1.25677 40 1.00107 13 0.79824 −85

RM-20 1.25648 22 1.00091 −3 0.79837 −64

RM-50 1.25625 7 1.00076 −18 0.79839 −61

RM-100 1.25618 3 1.00070 −24 0.79838 −62

solution for each of the three core configurations. The standard diffusion solution performs
rather well for core 1 with deviation of 182 pcm, but fails for cores 2 and 3 with deviation
of 773 and 3335 pcm, respectively. This is explained by the fact that cores 2 and 3 are
more heterogeneous compared to core 1. The Ronen method performs better than standard
diffusion for all three cores, even after merely 10 iterations. Additional Ronen iterations
further improve the estimated multiplication factor until convergence within the prescribed
tolerance.

The two-group flux distribution across each core is shown in Fig. 11 for standard diffusion
(D0), Ronen method (RM) and the S16 reference solution. RM results are shown for 100
iterations, and the spatial mesh spans 8 nodes in the water and 22 nodes in each fuel element.
On a first glance, it is easy to see that standard diffusion fails to produce the steep flux gradients
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Fig. 11 Fast and thermal flux for each core using standard diffusion (D0), Ronen method (RM) and S16
reference solution. Vertical grid lines are located at assemblies interfaces. RM results are for 100 iterations,
and the spatial mesh spans 8 nodes in the water and 22 nodes in each fuel element

across material interfaces, especially between fuel and water. This is more pronounced for
the fast flux, where even in core 1 it is not described correctly.

The fast and thermal flux deviation of standard diffusion (D0) and Ronen method (RM)
with respect to S16 reference solutions is shown for each core in Fig. 12. The fast flux is
poorly reproduced by standard diffusion, with up to ∼10% deviations at the inner interfaces
and ∼20% at the outer boundaries (in agreement with the homogeneous case). Deviations of
the thermal flux calculated by diffusion increase from ∼4 to ∼10% as the heterogeneity of
the core increases. The deviations of the fast and thermal flux calculated by Ronen method
are much smaller, with practically negligible values in the fuel and less than ∼2% in the
water.

It is illustrative to examine the spatial distribution of the Ronen method correction factors
for the heterogeneous case. The behavior of the correction factor (Fig. 13) may seem a bit
erratic, but can be explained. In regions where the flux gradients are small, the correction
factors tend to vanish and actually produce solutions similar to standard diffusion. However,
in regions where the flux gradients are steep, the correction factors do not vanish and play
an important role in reproducing the correct flux shape.

5 Conclusions

The Ronen method was first proposed for better estimates of the diffusion coefficient by
calculating the current with a higher-order transport operator and a known best-estimate
neutron flux. This yielded an iterative scheme leading to new flux distributions solved by a
diffusion solver but with additional (spatially) corrected diffusion terms, driving the diffusion
solution to that of the integral transport equation.
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Fig. 13 Behavior of the Ronen method correction factor δD along the core, for the fast and thermal fluxes.
Vertical grid lines are located at assemblies interfaces, results are for 100 iterations, and the spatial mesh spans
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The basic relation proposed by Ronen, i.e., Eq. (3), becomes problematic in the regions
where the gradient of the flux is small, that is usually where diffusion performs well. Ronen did
not elaborate on this issue in his technical note from 2004. Theoretically, both the numerator
and the denominator should vanish at the same location since both are accurate expressions
for the neutron current with weak flux gradients. We assume that this ratio, considered as
a ratio between two quantities which tend to zero at the same location, approaches some
constant value since there exist a diffusion coefficient at that location. However, any value
would be possible in Fick’s law because of the vanishing flux gradient.
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Numerically, Tomatis and Dall’Osso chose in 2011 to deal with this potential singularity
by using the well-known drift terms, which serve as a numerical feature. The (more accurate)
surface current Jtr , calculated by the integral expression, is written as the sum of the surface
current calculated by diffusion, JD, plus a correction δ J . Hence, when the current vanishes,
the correction δ J vanishes as well. Moreover, the correction is written as in Eq. (21), avoiding
the potential divergence resulting from division by zero.

More accurate results are obtained for the two-group benchmark problem reported in [11],
and new results are reported for a heterogeneous benchmark. The performances of the Ronen
method, especially for the heterogeneous benchmark (as shown in Figs. 11, 12, 13), strongly
indicate that it is inherently suitable to deal with non-homogeneous systems and can naturally
adapt to interfaces, where strong gradients of the flux might appear.

In general, slow convergence is observed for the scalar flux with the larger discrepancies,
compared to the reference, located on the vacuum boundary and on the material interfaces.
Although the method is converging to the reference results provided by a discrete ordinate
transport code, the improvement of the convergence rate and the use of coarser meshes are
crucial for the advancement of the methodology in practical applications. These topics will
be addressed as future developments, as well as higher-order anisotropy.
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