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On the Ronen Method in Simple 1-D Geometries for
Neutron Transport Theory Solutions

Daniele Tomatisa , Roy Grossb, and Erez Giladb

aDES, Service d’�etudes des r�eacteurs et de math�ematiques appliqu�ees (SERMA), CEA, Universit�e
Paris-Saclay, Gif-sur-Yvette, France; bThe Unit of Nuclear Engineering, Ben-Gurion University of
the Negev, Beer-Sheva, Israel

ABSTRACT
In this work, we apply the Ronen method to obtain highly-
accurate approximations to the solution of the neutron trans-
port equation in simple homogeneous problems. Slab, cylin-
drical, and spherical geometries are studied. This method
demands successive resolutions of the diffusion equation,
where the local diffusion constants are modified in order to
reproduce new estimates of the currents by a transport oper-
ator. The diffusion solver employs here finite differences and
the transport-corrected currents are forced in the numerical
scheme by means of drift terms, like in the CMFD scheme.
Boundary conditions are discussed introducing proper approx-
imations to save the particle balance in case of reflection in
the slab. The solution from the Ronen iterations is compared
against reference results provided by the collision probability
method. More accurate estimates of the currents are provided
by integral transport equations using first flight escape proba-
bilities. Slow convergence on the scalar flux is analyzed,
although the results match the reference solutions in the limit
of fine meshes and far from the bare boundary.

KEYWORDS
Ronen method; collision
probability method; neutron
transport; CMFD

1. Introduction

In 2004, Ronen suggested to calculate more accurate currents by means of
an integral transport operator still using a neutron flux computed in diffu-
sion theory (Ronen 2004). This allowed having new estimates of the diffu-
sion coefficient still using Fick’s law. Since these estimates need a known
flux distribution, it was also suggested to execute new diffusion calcula-
tions, thus updating iteratively the diffusion coefficient in the global calcu-
lation. The main reason motivating this method was to overcome the
underlying limitation of Fick’s law requiring low flux gradients, and so low
neutron absorption and high scattering in general. Nevertheless, isotropic
scattering remained as a basic postulate.
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This idea was later used by Tomatis and Dall’Osso, who provided a
numerical demonstration in a simple slab problem (Tomatis and Dall’Osso
2011). Instead of updating the diffusion coefficient by the ratio of the cur-
rent exchange and the flux gradient, as in Fick’s law, they recurred to the
scheme of the coarse mesh finite differences (CMFD) method for taking
into account the new currents estimated by the integral transport operator
in the diffusion solver. This technique, largely adopted in the literature of
nodal methods (Smith 1983; Lawrence 1986), can avoid indeterminate divi-
sions in case of vanishing current and flux gradient. They tested this imple-
mentation in a bare slab with two-group cross sections homogenized in a
realistic PWR assembly. It was observed that the Ronen method (RM)
could drive the flux from diffusion towards the reference of the integral
Boltzmann transport equation, regardless of the initial formulation used for
the diffusion coefficient. Remarkably, the unphysical zero-flux boundary
condition was not preventing to correct the flux near the boundary, that is
within a few mean free paths. However, higher errors were noticed at the
boundary with vacuum, slowly decreasing even after many iterations.
In this work, we investigate further the convergence on the first flux

moments, aiming to extend the study to the cylindrical and spherical geo-
metries with homogeneous media. The details of the implementation of the
RM in the diffusion solver are presented in Section 2, while the procedure
to estimate the currents by the integral transport operator follows in
Section 3. Boundary conditions are derived in Section 4. The results on a
few characteristic configurations are discussed in Section 5. Finally, the art-
icle ends with the conclusion in Section 6.

2. Implementation

The cross sections, as well as the diffusion coefficient, are usually available
as volume-averaged data per cell in the mesh. A lattice transport computer
code can prepare these data by homogenization. Once the scalar flux is
known from the finite differences solver using the original diffusion coeffi-
cients, the integral expressions derived in Section 3 can be used to get new
estimates of the current J at the cell interfaces. Instead of computing new
diffusion coefficients on the same interfaces straight by Fick’s law, J ¼
�D@x/, we obtain new corrective currents dJ ¼ J � ! that are supplied
next to the neutron balance in diffusion. Here, ! is the current obtained
with the original values of the diffusion coefficient and with the derivative

Figure 1. Notation of the 1D mesh.
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approximated by finite differences. In 1D geometry and using the notation
in Figure 1, it is:

!iþ1=2 ¼ �2Diþ1=2
/iþ1 � /i

Diþ1 þ Di
, for i ¼ 0, :::, I � 1, (1)

where Di ¼ ðxiþ1=2 � xi�1=2Þ: Integer and rational subscripts indicate cell-
averaged and interface quantities, respectively. Since the input diffusion
coefficients are provided as volume-averaged, and that they are always
needed at interfaces, we approximate them by local volume averages:

Diþ1=2 ¼ Diþ1Viþ1 þ DiVi

Viþ1 þ Vi
, for i ¼ 0, :::, I � 1: (2)

The values of the diffusion coefficient at �1=2 and I � 1=2 are simply the
coefficients of the boundary cells. Vi is the reduced volume in the i-th cell,
that is determined along the only dimension of interest. It is then per unit
of transverse surface in the slab, the unit azimuthal angle in the cylinder
and per unit cone in the sphere. Specifically, Vi ¼ Dici with ci depending
on the system of coordinates. The c coefficients are unitary in the
Cartesian frame. In the cylinder, ci ¼ xi for all i with xi ¼ ðxi�1=2 þ
xiþ1=2Þ=2 (arithmetic mean), whereas ci ¼ ð4x2i � x̂2i Þ in the sphere with
x̂i ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xi�1=2xiþ1=2
p

(geometric mean). The discretized form of the current
dJ must involve the flux in order to be taken into account in the finite dif-
ferences’ equations. Its representation is changed into a drift-advection
term determined by the neighboring cell fluxes, thus avoiding possible
undefined division by zeros in case of flat flux (Smith 1983):

dJiþ1=2 ¼ �2dDiþ1=2
/iþ1 þ /i

Diþ1 þ Di
, for i ¼ 0, :::, I � 1: (3)

This allows determining the new numerical corrections dD to use in the
finite differences solver, together with the diffusive currents from Equation
(1). If necessary, the spatial differences at the denominator of Equation (3)
can be removed by reason of the arbitrary definition used for dD. Finally,
the neutron balance resolved by the CMFD takes into account both types
of currents ! and dJ. Non-linear iterations with new corrections given by
dJ are needed because of their dependence on the unknown flux.
The divergence operator used in the multi-group balance equation can

be described with the general form dxðxbJgÞ=xb, with b¼ 0, 1, and 2
respectively for the slab, for the cylinder, and for the sphere. We solve then
for the volume-integrated flux,

/̂g, i ¼
ðxiþ1=2
xi�1=2

xb/gðxÞdx ¼ �/g, iVi,
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making the approximation that the average group flux �/g, i � /g, i in the
equations above.

3. Current estimation

3.1. Slab geometry

The angular flux from the integral transport equation (with standard nota-
tion) is:

uðx, lÞ ¼ uðxb, lÞe�sðxb, xÞ=l þ
ðx
x0

dx0
qðx0, lÞ

l
e�sðx

0, xÞ=l, (4)

with the optical length

sðx1, x2Þ ¼
ðx2
x1

dx0rtðx0Þ:

Contrary to other formulations, we do not include the direction cosine
of the neutron velocity l in the definition of the optical length to ease the
numerical integrations in the following. Equation (4) holds for both posi-
tive directions ðl > 0Þ where x0 ¼ x�1=2 ¼ a, and negative ones ðl > 0Þ
where x0 ¼ xI�1=2 ¼ b: The inclusion of the energy variable in Equation (4)
is straightforward; we use hereafter the multi-group theory, writing the
source qg as

1:

qg ¼
XG
g0¼1

X1
l¼0

2lþ 1
2

rs, l, g0!gðxÞPlðlÞul, g0 ðxÞ þ
vg

2fkg �rf , g0 ðxÞ/g0 ðxÞ
" #

þ Sg ,

(5)

where the subscript l refers to the moments of the expansions of the flux
and of the scattering cross section on the Legendre polynomials Pl. Fission
emission is isotropic, so that only the scalar flux / being equal to the first
moment u0 is retained for the fission term. Without the external source S,
the multiplication factor k is used as eigenvalue to avoid the only trivial
vanishing solution. Since q is computed by the results of the diffusion
equation in the RM, the degree l can only assume the values 0 and 1, with
the second moment u1 equal to the net current J. Therefore, the sum over
l will always be truncated in the following.
Multiplication of Equation (4) by l and the integration over ½�1, 1� provides

the expression for the current, see (Tomatis and Dall’Osso 2011). The integra-
tion on l yields integral exponential functions by a simple change of variable
(l ¼ 61=u, according to the sign of l) (Abramowitz and Stegun 1964):

1Curly bracket remind the possible use of the k-eigenvalue in case of vanishing external sources.
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EnðsÞ ¼
ð1
0
dl e�s=lln�2 ¼

ð1
1
du e�suu�n, n � 0:

These special functions are then used to compute the current at the cell
interfaces for all i:

Jg, iþ1=2 ¼
ð1
0
dl lugða, lÞe�sgða, xiþ1=2Þ=l �

ð�1
0

dl lugðb, lÞe�sgðb, xiþ1=2Þ=l

þ
XI�1
j¼0

sgnðxiþ1=2 � xjþ1=2Þ
q0, g, j
2

ðxjþ1=2
xj�1=2

dx0E2 sgðx0, xiþ1=2Þ
�� ��� �"

þ 3
2
q1, g, j

ðxjþ1=2
xj�1=2

dx0E3 sgðx0, xiþ1=2Þ
�� ��� �#

,

(6)

where qð�Þ, g, j are the moments of the source qg from Equation (5) averaged
in the volume of the jth cell:

q0, g, j ¼
X
g0

rs, 0, g0!g, j þ vg�rf , g0, jð Þ/g0, j, (7a)

q1, g, j ¼
X
g0

rs, 1, g0!g, jJg0, j: (7b)

The current appearing in q1, g, j, that is in case of linearly anisotropic
scattering, is also to be considered as volume-averaged in the cell j. The
optical lengths s in Equation (6) show the subscript g because they are
evaluated with the corresponding total cross section rt, g: For the property
E0nþ1ð‘Þ ¼ �Enð‘Þ, the spatial integrals of the integral exponential functions
can be solved analytically by integrating on s:ðxjþ1=2

xj�1=2
dx0En sgðx0, xiþ1=2Þ

�� ��� �
¼ sgnðxiþ1=2 � xjþ1=2Þ

rt, g, j

� Enþ1 sgðxjþ1=2, xiþ1=2Þ
�� ��� �

� Enþ1 sgðxj�1=2, xiþ1=2Þ
�� ��� �h i

:

These quantities can be computed for i> j only, because the others are
simply opposite in sign (anti-symmetric). Equation (6) can be reformulated
for the partial currents, thus considering only the contributions coming
from the different sides of xiþ1=2: Omitting the index on groups and keep-
ing only isotropic sources, this is:
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J6iþ1=2 ¼
XI

j¼1
q0, jDi~e

6
iþ1=2, j þ J6ðxbÞ~tiþ1=2, xb : (8)

We make explicit use of the theory of the collision probability method
(CPM; Lewis and Miller 1984; H�ebert 2009) to write Equation (8). ~eiþ1=2, j
represents the probability of a neutron emitted isotropically in Di to escape
uncollided at xiþ1=2, along its positive or negative direction of flight. The
expression for ~e can be derived straightforwardly from Equation (6) by
rearranging the terms in the sum at the right-hand side. ~tiþ1=2, xb is the
transmission probability of a neutron to enter isotropically at xb and to
cross the interface at xiþ1=2 without colliding hitherto, i.e. ~tiþ1=2, xb ¼
2E3ðsðxiþ1=2, xbÞÞ: A discussion about the transmission probability follows
in Section 4.

3.2. Cylindrical geometry

The expression of the current in curvilinear geometries is derived in this
section from the 3D Cartesian geometry, where the angular flux at point r
along the direction of flight X is given by the general expression (Lewis
and Miller 1984):

uðr,XÞ ¼
ðS0
0
ds0 qðr� s0X,XÞ exp ð�sðr, r� s0XÞÞ

þ uðr� S0X,XÞ exp ð�sðr, r� S0XÞÞ, (9)

that is considering the contribution of the source q within the distance
S0ðr,XÞ from the boundary and the possible entering amount of particles
therein. All contributions are collected at r by exponential attenuation

Figure 2. Projection of vectors on the x-y plane.
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along the traveled optical path, that is according to the probability of still
continuing the first flight after emission. We examine first the case of the
cylinder as a particular case of the 2D frame. In planar geometry, the angu-
lar flux and the source do not depend on the axial coordinate z. Hence, the
position on the characteristic line identified by X is projected on the x-y
plane (see Figure 2): uðr� s0X,XÞ ¼ uðr� sXp,XÞ and likewise for q,
with the unit vector Xp lying on the x-y plane. h is the polar angle meas-
ured between êz and X: In absence of incoming particles, this allows to
rewrite Equation (9) as:

uðr,XÞ ¼
ðS
0
ds

qðr� sXp,XÞ
sin h

exp � sðr, r� sXpÞ
sin h

� �
: (10)

As well, integration of Equation (10) over the solid angle dX ¼
sin hdxdh yields the scalar flux at point r. The theory of CPMs originates
from the use of flat isotropic sources in the cells of the spatial mesh. The
use of anisotropic sources with spatial variation in the same cells, for
instance polynomial-like, is possible but leads to much more difficult
expressions to solve. Two integrations in space arise for each direction X,
connecting the source in region j to the flux (or its total reaction rate) in
region i by means of its collision probability. The incoming flux is usually
considered as isotropic too, or linearly anisotropic in angle as in (H�ebert
2009) to relate the partial entering and outgoing currents to the only first
flux moments. These partial currents on the boundary must satisfy a gen-
eral condition of albedo.
Using standard nomenclature of CPMs, transfer probabilities refer to

particles entering the problem domain and leaving it without incurring
into any collision. They can provide the probability of reflection in case the
entering and the leaving surfaces are the same. The probability of escape
deals with neutrons produced in a given region and leaving a surface, still
uncollided. These probabilities are employed to write the integral transport
equations for the volume-averaged scalar flux (or its total reaction rate) in
each cell, and the surface-averaged currents at the cell interfaces.
The projections of partial currents on the outward normal n̂ to a given

surface are obtained from integration of Equation (10) in dX with the
weight jn̂ �Xj ¼ sin hjn̂ �Xpj on n̂ �X90: Higher moments can be
obtained by the weights associated to the corresponding spherical harmon-
ics. Integration along the polar angle is resolved analytically by the Bickley-
Naylor functions (Amos 1983):

KinðsÞ ¼
ðp=2
0

dh sin n�1h exp � s
sin h

� 	
, n � 0: (11)
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The properties used for the computation of these functions are available
elsewhere (Lewis and Miller 1984; H�ebert 2009). We use the Fortran library
by Amos from 1983 in this work (Amos 1983).
After introducing these arguments for a bare cylinder, the current leaving

the cylindrical surface at r (with direction n̂) given by neutrons flying along
Xp is:

JþðrÞ ¼ 1
2p

ð
Wþ

dx n̂ �Xp

�� �� ðS
0
ds Ki2 s r, r� sXp


 �� 

qðr� sXpÞ, (12a)

with Wþ ¼ xjn̂ �Xp > 0
� �

: Using the surface element dA0 ¼ sdxds and

r0p ¼ r� sXp, it is also:

JþðrÞ ¼
ð
Wþ� 0, S½ �

dA0 n̂ � ðr� r0pÞ
Ki2 s r, r0p

� �h i
2p r� r0p

��� ���2 qðr0pÞ: (12b)

J– is obtained with integration over w 2W� ¼ xjn̂ �Xp < 0
� �

instead.

Figure 4. Integration along the tracks in the 1D cylindrical geometry (suggested by Fig. 3.17 of
reference (H�ebert, 2009)).

JOURNAL OF COMPUTATIONAL AND THEORETICAL TRANSPORT 141



Another integration on the total surface SðrÞ ¼ Ð
rdh0 ¼ 2pr, with h0 ¼

n̂ �Xp, is necessary to obtain the current density in the 1D frame. For a
given angle x, we have then volume integrals to solve numerically along
many parallel lines called tracks, see Figure 4, for rdh0 ¼ dh= cos h0:
Furthermore, the tracks are identical for any angle x in the 1D cylindrical
geometry factoring out 2p from the integrals in Equations (12), which can
also be limited to half portion of the cylinder thanks to its symmetry.
Finally, the outgoing and incoming currents at r become:

J6ðrÞ ¼ 6
1
pr

ðr
0
dh

ð6y

�Y
d‘ Ki2 sðy, y� ‘Þ� 


qðh, y� ‘Þ (13)

with yðr, hÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � h2
p

, Y ¼ yðR, hÞ and the outer radius R. After multi-
plication by S(r) and still with uniform sources, Equation (13) can be writ-
ten in terms of the escape probability ~ejðrÞ for a neutron to be emitted
isotropically in ring j and to leave uncollided along the normal direction
the semi-cylinder surface at r, being crossed with angle x 2W6:

J6ðrÞSðrÞ ¼
X
j

qjVj 6~e6j ðrÞ
h i

with ~e6j ðrÞ

¼ 2
Vj

ðr
0
dh

ð
L6j

d‘ Ki2 sðy, y� ‘Þ� 

, (14)

L6j ðhÞ ¼ ½�Y,6y� \ Vj and where Vj is the ring area. Ki2 sðy, y� ‘Þ� 

is the

Figure 3. Use of symmetry in the sphere for integration over the surface.
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transport kernel expressing the probability of a neutron to travel uncollided
along x for a length s, given in mean free path units, from ðy� ‘Þ to y
(Stamm’ler and Abbate 1983). The integral on the track ‘ is written differ-
ently for the convex and for the concave parts of the rings with respect to
the direction of flight, see for instance track 1 and 2 in Figure 4 where the
same notation of Figure 1 is used for the radial mesh. The current leaving
the ith ring at riþ1=2 gets all source contributions weighted with the quanti-

ties eþiþ1=2, j ¼ Vj~e
þ
iþ1=2, j:

eþiþ1=2, j ¼ 2 �ðri�1=2
0

dh
ð‘j
0
d‘

�
Ki2 2ri‘i þ sii þ sij þ rj‘


 �
if i < j

þ Ki2 ri‘i þ ð1� dijÞðsij þ rj‘jÞ þ sjj þ rj‘

 �

if i � j

þ Ki2 ð1� dijÞðri‘i þ sijÞ þ rj‘

 �

if i � j�
þ
ðriþ1=2
ri�1=2

dh y
ð‘j
0
d‘ Ki2 ð1� dijÞðri‘i þ sijÞ þ rj‘


 �
if i � j,

8>>>>>>>>>>>><
>>>>>>>>>>>>:

(15)

using the Kronecker function dij ¼ 1 only if i¼ j and null otherwise. sij
and sii are respectively the optical lengths between the rings i and j, and
across the outer diameter of ring i. The radial integral includes all rings
within riþ1=2: The integrals involving the Ki function are solved thanks to
the property dsKinðsÞ ¼ �Kin�1ðsÞ:
The corresponding form for the reduced escape probability for the

incoming current is

e�iþ1=2, j ¼ 2
ðriþ1=2
0

dh
ð‘j
0
d‘ Ki2 sji þ rj‘


 �
, (16)

for i< j, whereas e�iþ1=2, j 	 0 for i � j since in this case a neutron born in

volume j (or in volume j¼ i) cannot enter volume i through its outer sur-
face at radius riþ1=2 without undergoing a collision. The useful reciprocity
and conservation properties commonly used in CPM solvers to save the
total computational effort can be applied only after calculating the first
flight collision probabilities.
Singularity of the integrand for the h-integration introduced in Equation

(13) is known in the convex part while computing the collision probabil-
ities (H�ebert 2009; Stamm’ler and Abbate 1983); this notably happens at
the outer radius of the jth ring where n̂ is perpendicular to Xp: However,
that integral can be regularized by a suitable change of variable, see
Appendix A. The calculation of the escape probabilities as presented in this
section is also affected by this endpoint singularity. Because of this
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singularity, the integral in h can then be resolved numerically with weights
and points by the Gauss-Jacobi quadrature, which is one order more accur-
ate than the common Gauss-Legendre quadrature.

3.3. Spherical geometry

The derivation of the scalar flux and of the current in the sphere follows the
same rational adopted in Section 3.2 by angular integration of Equation (9)
and exploiting the symmetries available in the given coordinate frame. Because
of the rotational symmetry, any direction of flight lays on a spherical cut pass-
ing through the origin (Xp ¼ X), see Figure 3. The integration to carry for

each direction X over the spherical surface SðrÞ ¼ Ð
r2 sin h0dh0dx0 ¼ 4pr2

shows a case similar to the cylinder of Figure 4, with integration on the semi-
circle along the coordinate h, thanks to the axial symmetry around x0 that fac-
tors out 2p, but with the new weight h ¼ r sin h0: The tracking integrals up to
the spherical surface are the same for all directions, so that the integration over
the unit solid angle yields simply 4p, canceling out the probability of isotropic
emission used for the source. Figure 3 is specific to the calculation of the posi-
tive radial partial currents. Negative partial currents need taking into account
the sources outside the depicted sphere of integration.
Using the same quantities defined in Equation (13), Equation (14) holds

also for the sphere but using the new reduced escape probability:

ejðrÞ ¼ 2p
ðr
0
dh h

ð
Lj

d‘ exp �sðy, y� ‘Þ� 

: (17)

Endpoint singularities at integration stand also in this case. The deriv-
ation of the equation for the current leaving the ith spherical surface can
be obtained straightforwardly from Equation (15).

3.4. Derivation of collision probabilities

The probabilities used to solve the integral transport equation can treat a
volume or surface source, and similarly for the target quantity after emis-
sion. Indeed, they consider only the first flight of particles until collision in
the target or leakage from its boundary (being still uncollided). The first
flight collision probability is then the probability that a neutron emitted
isotropically in a cell volume suffers its first collision in another or within
itself. This is equivalent to count the number of first collisions in the same
target volume produced by a unitary source in the starting volume. This
number cannot be an integer of course.
After all escape and inscape probabilities are known, the first flight colli-

sion probabilities can be determined by conservation properties in order to
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reduce the amount of total operations. The escape probabilities obtained
from Equations (15) and (16) yield the number of neutrons leaving a sur-
face uncollided. For instance, the probability ~p for a neutron emitted iso-
tropically in the region i to collide in the same region must fulfill the
following relation:

~pii þ ~eþiþ1=2, i þ ~e�i�1=2, i ¼ 1, 8i: (18a)

~e denotes a total escape probability introduced above. This can be general-
ized with neutrons coming from region j and colliding in region i as:

~pij ¼ ~eþi�1=2, j � ~eþiþ1=2, j þ ~e�iþ1=2, j � ~e�i�1=2, j þ dij, (18b)

with ~e671=2, j ¼ 0, 8j in the sphere and in the cylinder. A formulation

resolving the integral Boltzmann equation by first-flight escape probabilities
was already introduced by Bitelli and Turrin (1974, 1976).
Particle conservation on the full domain requires

P
i ~pij þ ~eþIþ1=2, j ¼ 1,

8j: At last, reciprocity implies

~pij
Viri
¼

~pji
Vjrj

and (19a)

~pj, iþ1=2
Vjrj

¼ 4
~eþiþ1=2, j þ ~e�iþ1=2, j

Siþ1=2
, (19b)

for 1 � i, j, � I: Equation (19a) can also be used to verify the implementa-
tion of the escape probabilities. Collision probabilities with surface source
emission from Equation (19b) are needed with non-zero entering currents
of neutrons at the boundary xIþ1=2: This probability refers again to an
angular flux entering the surface ðiþ 1=2Þ isotropically, yielding the cosine
current typical of white reflection.
Transmission probabilities between surfaces are also needed in response

matrix formulations and with boundary conditions different from vacuum.
The response matrix formulation partitions the calculation domain in sep-
arate blocks, which exchange out-going and entering partial currents to
update their internal distributions of reaction rates. The method to solve
the integral transport equation by the CPM providing reference solutions
for the RM is reported in Appendix B.
It might not be possible to compute the escape probabilities as derived

in this work using existing computer codes that employ the CPM without
code modifications. In fact, existing codes usually calculate directly the col-
lision probabilities, by which all other probabilities are determined next
using reciprocity and conservation properties. Besides, these codes only
need to calculate the escape probability from the outer boundary surface.
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4. Boundary conditions

A generalized form for the boundary condition of the diffusion equation
applying at the left side of the slab follows as ! ¼ �D0/0=ðD0=2þ fÞ,
where f is the extrapolation length in case of vacuum. f ¼ 2D yields the
Marshak boundary conditions for instance, but the value f ¼ 2:13D is usually
recommended in slab geometry (Stamm’ler and Abbate 1983). Reflection can
be reproduced by f!1, whereas the condition of zero-flux comes with
f¼ 0. The boundary dJ takes the simpler form dJ ¼ �dD�1=2/0 without
dividing by the spatial width, since no particular extrapolation length is meant
for the correction. Indeed, it will be possible to determine the actual extrapo-
lation length only at convergence. The expression for the right boundary is
straightforward, implying a non-negative current. Reflection is always assumed
at the center in curvilinear geometries.
About the currents from Equation (6), the boundary conditions must be

implemented through the first two terms at the right side due to the incoming
flux. They are zero by definition only in case of vacuum. The flux expansion
on the Legendre polynomials is necessary to reproduce other types of bound-
ary condition. Again, we can only approximate the flux up to the first order,
that is u � /=2þ 3=2Jl: This approximation may not reproduce a vanishing
current with reflection reproducing a symmetric distribution. Only situations
with perfectly isotropic angular flux at the boundary will be described cor-
rectly. At the left boundary for instance, the current can be expressed as

JðaÞ ¼ Jþ þ J� ¼ 0 with the entering current Jþ ¼ Ð 1
0 dlluða, lÞ ¼ �J�: J–

takes into account all contributions coming from the right of a up to b, see
Equation (6). In the absence of higher moments, the angular flux at the
boundary becomes simply /ða, lÞ � u0ðaÞ=2, yielding JþðxÞ ¼
E3ðsða, xÞÞu0ðaÞ=2, or JþðxÞ ¼ ~taðxÞ/ðaÞ=4 using the CPM formalism (white
reflection at a). Here, ~t is the transmission probability of neutrons crossing
uniformly and isotropically the surface a to get to the position x uncollided.
The value of this probability can be obtained through reciprocity and conser-
vation properties, as shown in Section 3.4. Hence, this approximation does
not guarantee to obtain the expected vanishing current at the boundary when
computing the same current at the boundary with symmetric flux distribu-
tions. However, it is possible to determine the difference between the partial
currents (remind that J– is negative). The higher (even) flux moments are
responsible for this residual quantity, but they are not available unfortunately.
A possible solution is considering that this quantity comes artificially from the
only second moment, like2

2The operator þ ¼ assigns to J the sum of itself and quantity to the right.
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JþðxÞþ ¼ 5
4
~u2ðaÞ 3E5ðsða, xÞÞ � E3ðsða, xÞÞ½ �,

with ~u2ðaÞ ¼ �
16
5

1
4
u0ðaÞ þ J�

� 	
:

(20)

The flux expansion at the left boundary is then

/ða, lÞ ¼ 1
2
u0 þ

3
2
lu1 þ

5
4

3l2 � 1

 �

~u2,

with u1 ¼ J ¼ 0 with reflection. The derivation of the correction at the
other boundary of the slab can easily be derived.
Transmission probabilities of neutrons entering with anisotropic (even)

distributions are now needed, but this time they cannot be derived from
the escape probabilities based on isotropic emission. We only give the
expression to calculate these quantities in the slab, since white reflection is
generally preferred in the 1D curvilinear geometries for reproducing more
accurate physical results.
Although this correction definitely improves the results, it cannot yield

exactly the same results of the unfolded geometry, that is without repro-
ducing the half symmetry by reflection. This occurs because the small cur-
rent difference is allotted only to the second moment, neglecting the others
which may become relevant on a case-dependent basis.

5. Results

New computer programs have been developed in Python v3.8.2 with the
numerical libraries NumPy v1.18.2 and SciPy v1.3.2 in order to solve the
diffusion and the transport problems after calculating the first flight escape
probabilities in the three geometries. The programs can treat heterogeneous
media and use the multigroup formalism in energy, being intended mainly
for educational purposes.
We present in this section one-group homogeneous critical problems

with isotropic scattering to study the behavior of the RM with angular
redistribution in the curvilinear geometries. These cases belong to a test set
of analytical benchmarks for code verification (Sood, Forster, and Kent
Parsons 2003). The setup of the complete test suite with problems of
increasing level of complexity is planned as future research action.
Although analytical solutions exist in the literature, reference solutions are

Table 1. One-group cross section values used in the benchmark problems.
Material � rf rc rs rt c

Pu-239 (PUa) 3.24 0.081600 0.019584 0.225216 0.32640 1.50
Pu-239 (PUb) 2.84 0.081600 0.019584 0.225216 0.32640 1.40
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here provided by the CPM, whose implementation takes advantage of the
escape probabilities derived in Section 3, and whose numerical solution is
explained in Appendix B. Besides, reference values of the fundamental flux
are provided by the benchmark problems at a few positions.
The problems are resolved in units of optical length according to the

change of variable x rx: The isotropically multiplying source becomes
q ¼ cu0=4p with the number of secondaries from scattering and fission
events c ¼ ðrs þ �rf Þ=r: The transport equation to solve is then:

l
@

@x
þ 1

� 	
uðx, lÞ ¼ c

4p

ð1
�1

uðx, lÞdl

The multiplicity � recovers the role of eigenvalue in absence of external
sources. The size of the problem is simply b ¼ rc with a¼ 0. The material
specifications of the benchmark cases are reported in Table 1. The naming
convention of the test cases follows Sood et al., with the critical lengths
listed in Table 2. All problems use the vacuum boundary condition.
The analytical solutions from diffusion theory are available in Table 3,

where the geometrical buckling B2
G is given by the root of the transcenden-

tal equations in the last column. The multiplication factor kD of the analyt-
ical diffusion problem is obtained by equating the geometrical buckling and
the material buckling B2

M ¼ ð�rf =k� raÞ=D ¼ ðk1=k� 1Þ=L2, where k1 ¼
�rf =ra is the multiplication factor in the infinite medium and L2 ¼ D=ra
is the diffusion area. The benchmark problems provide the reference trans-
port fundamental flux at given positions, see Table 4. The scalar fluxes are
all normalized to be unitary at the center.
After computing the numerical solution of the diffusion problem by

finite differences without corrections at the cell interfaces, we evaluate new
current estimates by using escape, transmission, and reflection probabilities

Table 2. Reference critical lengths rc of the test cases, with the multiplication factor kD and
the geometrical buckling B2G of the analytical solution in diffusion.

Problem Id. Geometry type

rc

kD B2G(mfp) (cm)

PUa-l-0-SL Slab 0.605055 1.853722 0.891973 0.191159
PUb-1-0-SL Slab 0.736603 2.256751 0.913739 0.149267
PUb-1-0-CY Cylinder 1.396979 4.279960 0.956090 0.138266
PUb-1-0-SP Sphere 1.985343 6.082547 0.964129 0.136287

Table 3. Analytical solutions from diffusion in centered, bare, and homogeneous one-group
problems of length X (vacuum boundary with extrapolation distance d ¼ fD).
Geometry type Solution BG, s.t.

Slab cos ðBGxÞ tan ðBGXÞ ¼ 1=ðdBGÞ, BG 2 ð0, p=ð2XÞÞ
Cylinder J0ðBGxÞ J0ðBGXÞ � dBGJ1ðBGXÞ, BG 2 ð0, 2:404825=XÞ
Sphere sin ðBGxÞ=x BGX � ð1� X=dÞ tan ðBGXÞ, BG 2 ðp=ð2XÞ,p=XÞ
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according to the given geometry type, as derived from the integral equation
in Section 3. Then, the solution by the RM is sought iteratively as explained
in Section 2. Four integration points are used in the Gauss-Jacobi quadra-
ture, yielding an error lower than 0.1%. The solution by diffusion in these
particular test cases is very different from the one by transport, which pro-
vides the physical solution. Anderson acceleration through the DAAREM
algorithm (Damped Anderson Acceleration with Epsilon Monotonicity) is
also used during the iteration process (Henderson and Varadhan 2019),
reducing considerably the number of iterations to achieve residuals on the
relative flux differences below 10�6: Its use is crucial to find the fixed point
solution throughout the non-linear iterations of the RM. Very low conver-
gence rates have been noticed without DAAREM, potentially leading to

Table 4. Fundamental flux from the reference transport solution of the benchmark.

Problem Id. Geometry type

r ¼ x=rc

r1 ¼ 0:25 r2 ¼ 0:5 r3 ¼ 0:75 r4 ¼ 1

PUb-1-0-SL Slab 0.970173 0.881054 0.731813 0.490259
PUb-1-0-CY Cylinder – 0.8093 – 0.2926
PUb-1-0-SP Sphere 0.935380 0.755753 0.498843 0.192226

Figure 5. Error in the half slab (PUa-1-0-SL) with white reflection at the right and vacuum at
the left; HS and FS indicate half slab and full slab, respectively.
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detect false convergence after a very high number of iterations, which
means obtaining the wrong flux solution afterwards.
The calculation of half slab by CPM after setting (white) reflection at the

center yields poor results due to missing contributions from the higher flux
moments, see Figure 5. Equidistant meshes are used by refining gradually
the cell width D. The solution obtained by RM takes into account the artifi-
cial correction applied to the only second moment, reducing the flux error
(see the green curves in the left plot), but its eigenvalue solution is higher
than 1 of 836 pcm on converged meshes. The eigenvalue computed by
CPM on half slab is lower than 1 of about 3000 pcm (see the right plot).
This issue, discussed in Section 4, is more severe with very thin slab, like
in the case PUa-1-0-SL, and disappears when the slab thickness rc increases
beyond a few mean free paths (mfp). This forces the modeling of the full
slab when verifying the flux distribution for the case PUb-1-0-SL. Such
issue does not appear at the center of the solid cylinder or sphere. All
methods computes a critical configuration for PUa-1-0-SL after unfolding
the half-slab. The study to verify the fundamental flux is then shown only
for the case PUb-1-0-SL.
About the cases PUb, the relative error on the critical flux computed by

CPM against the values from Table 4 are shown in Figure 6 for increasing
number of cells (I) with equivolume meshes. The same figure shows also

Figure 6. Relative error in percent of the fundamental flux for all PUb cases.
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the results obtained by RM. Basically, RM and CPM results overlap but at
the vacuum boundary where the monotonic behavior of the error trend is
broken with fine meshes, leaving a residual error of about 1–2% in the slab
and in the cylinder, and higher than 3% in the sphere. The spherical geom-
etry needs finer meshes to decrease the error, which is still higher near the
outer boundary. Refined meshes near the boundary, drawn for instance by
a geometric progression with ratio less than one, can lower this error, see
the program released with this publication. The flux at the boundary used
to reproduce the current by diffusion is approximated by a quadratic poly-
nomial fitting the midpoint fluxes at the nearest three cells, instead of the
only flux of the last cell.
The deviation of the multiplication factor from unity by refining the

mesh is shown in Figure 7. When unfolding the reflected slab, the number
of cells in the slab is doubled indeed for taking a thickness of 2rc in the
calculations. This explains why the plotted error for the slab is higher than
the one for the cylinder at a given value of I. The same trend for the three
geometries is noticed, with the spherical one needing finer meshes to
achieve the same level of error. The multiplication factor computed by RM
is about the same as the one given by CPM.
The solution by CPM needs a single inversion of a full matrix with the

direct and fast solving scheme reported in Appendix B. This scheme may
not be suitable to problems with a high number of energy groups and spa-
tial cells. The RM needs to invert several times a tridiagonal matrix, which
is efficiently performed in our code by the Thomas TDMA algorithm, a
simplified form of Gaussian elimination that can be used to solve tridiago-
nal systems of equations (Quarteroni, Sacco, and Saleri 2007). Both

Figure 7. Error in pcm of the multiplication factor k in the PUb critical benchmark problems.
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methods share the calculation part of the first flight escape and collision
probabilities. Typical runtimes of the benchmark problems treated in this
article are quite fast (a few seconds or minutes depending on the size of
the problem), and they can be easily run on any laptop computer. The cal-
culation of the first flight probabilities is the most expensive part, especially
in curvilinear geometries, and it should be reprogrammed in a compiled
language to save runtime.

6. Conclusion

Initially the RM was proposed for better estimates of the diffusion coeffi-
cient by calculating the current with a higher-order transport operator and
a known best-estimate neutron flux (Ronen 2004). This can originate an
iterative scheme leading to new flux distributions solved by a diffusion
solver yet with the aim to fulfill the integral transport equation. The direct
resolution of the integral equation, as in the CPM, implies the inversion of
full matrices, with generally poor control of their conditioning. The solu-
tion of the diffusion equation offers many numerical advantages instead,
solution speed and robustness above all.
Furthermore, the same current obtained by the higher-order operator can

be enforced in the discretized form of the diffusion equation as suggested by
the CMFD scheme, which avoids the numerical issues arising with flat flux.
This is also the option adopted in this work. In particular, the RM is here
developed under the common formalism of CPM theory, thus offering a for-
mal derivation in the framework of integral transport with the nonlinear itera-
tions of the CMFD scheme. Only first flight escape probabilities are
computed, by which all other kinds of probabilities are derived using conser-
vation and reciprocity properties.
The implementation of the boundary conditions is improved to reproduce

the expected vanishing current in case of reflection. However, this correction
is not sufficient to remove the limitations due to the use of white reflection,
which is particularly serious in problems smaller than a mean free path.
The solutions are verified with simple one-group homogeneous problems

and isotropic sources from the benchmark test suite by Sood, Forster, and Kent
Parsons (2003). More benchmark problems will be analyzed in a future work
to study the RM with material heterogeneity and with many energy groups.
The application of the RM to problems with anisotropic scattering suffers from
the lack of the flux moments higher than the first since diffusion can count
only on the scalar flux and on the net current. This article shows the extension
of the RM to linearly anisotropic scattering in the source terms in the case of
the slab. The study of anisotropy still needs further developments.
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The use of Anderson acceleration implemented in the RM iterations with
the DAAREM algorithm was crucial to find converged results, fixing the
issue of slow convergence noticed in the previous published works
(Tomatis and Dall’Osso 2011; Gross, Tomatis, and Gilad 2020). The large
discrepancy on the scalar flux observed in previous works at bare vacuum
boundaries has now been reduced to a few percent with respect to the ref-
erence solutions. However, it is still necessary to investigate these remain-
ing differences at the boundary, like using for instance higher-order
numerical approximations of the discretized equations. This strong
improvement in the flux behavior suggests that the same test problems
could have been affected in the past implementations by false convergence
for very slowly decreasing convergence rates. Additional tests are on-going
to verify this assertion. The upgrade of the RM to coarser meshes and dif-
ferent implementations of the CMFD scheme will be the objects of future
research and development. These are considered as central topics for the
advancement of the methodology in practical applications.

Additional material

The theory and results of this article were produced by the computer program available at
https://github.com/ndarmage/RM1D.git. This program is freely distributed for educational
purposes and basic training in transport theory, without containing any confidential mater-
ial on nuclear data.
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Appendix A: Gauss-quadratures

The integrals used in the calculation of the probabilities in the cylindrical and spherical
frames are in the form:

I ¼
ðriþ1=2
ri�1=2

dhKð‘ðhÞÞ,

and they are often evaluated numerically by Gauss-quadrature. The integrand can show an
endpoint singularity in the first derivative when integrating in the convex regions, since
dhK ¼ @‘K @‘h and

lim
h!riþ1=2

�2hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2iþ1=2 � h2

q ¼ �1,

for ‘ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2iþ1=2 � h2

q
(H�ebert, 2009). The use of a Gauss-Legendre quadrature with N

points in the integration interval is a good choice only if the integrand is continuous over
the interval up to order 2N. Gauss-Legendre quadrature integrates exactly polynomials of
degree less than 2N. The definite integrals can be regularized by a proper change of vari-
able following the Flurig scheme, which yields a Gauss-Jacobi quadrature scheme (Carlvik,
1966). We propose hereafter a general change of variable to obtain both schemes at once:
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. ¼ 1� 2
riþ1=2 � h

Dri

� 	ð1�a=2Þ
(21)

with Dri ¼ riþ1=2 � ri�1=2 that yields

I ¼ Dri
2

ð1
�1

d.ð1� .ÞaKð‘ð.ÞÞ ¼
XN
n¼1

wnKð‘ðhnÞÞ, (22)

with the Gauss-Legendre scheme for a¼ 0 and the Gauss-Jacobi scheme for a¼ 1. After
retrieving the weights vn and the roots .n of the selected N-point quadrature in ½�1, þ 1�,
the weights and roots to use in Equation (22) are respectively:

wn ¼ Dri
2

vn and hn ¼ riþ1=2 � 1� .n
2

� 	ð1þaÞ
Dri: (23)

Weights and roots are obtained by the Scipy v1.4.1 library (special.roots_jacobi) and
Numpy v1.18.2 (polynomial.legendre.leggauss). We note that the values from these libraries
are different from the ones printed in the cited textbooks (H�ebert, 2009; Stamm’ler and
Abbate, 1983).

Appendix B: Direct solution of integral transport by the collision
probability method

The integral transport equation for the scalar flux with isotropic sources can be written
using the first flight collision probabilities as (Lewis and Miller, 1984; H�ebert, 2009):

Viri/i ¼
XI

j¼1
qjVj~pij þ Jð�Þb Sb~pib, (24a)

where b stands for any boundary with a non-zero entering current Jð�Þb ¼ /b=4, given as
well by an isotropic angular flux. ~pij and ~pib are the probabilities of a neutron to have its

first collision in the volume Vi after being emitted isotropically in the volume Vj or from
the surface Sb, respectively. b ¼ I þ 1=2 for the cylindrical and for the spherical geometries
after placing the center at xa ¼ 0 (a ¼ �1=2), whereas two incoming currents can be pre-
sent in the slab. This equation can be simplified further by using the reciprocity property
from Equations (19),

/i ¼
XI

j¼1
qjpji þ 4Jð�Þb ~ebi (24b)

with the reduced escape probability pji ¼ ~pji=rj and the escape probability counting for

both the signed terms. The incoming current at the boundary can be given as fixed external
source, or being expressed as proportional to the out-going current by means of an albedo
0 � b � 1, like

J�b ¼ bbJ
þ
b ¼ bb

XI

j¼1

qjpjb
4
þ ~rbJ

�
b þ~tba

Sa
Sb

Jþa

0
@

1
A, and (25a)
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Jþa ¼ baJ
�
a ¼ ba

XI

j¼1

qjpja
4
þ ~raJ

þ
a þ~tab

Sb
Sa

J�b

0
@

1
A, (25b)

with the reduced collision probability from the surface at xb thanks again to reciprocity.
About 19 b, reciprocity always considers entering neutrons distributed according to the
cosine described by the direction of flight and the normal to the same surface, yielding a
cosine current by J6 ¼ /=4, suitable to reproduce white reflection with b¼ 1. The reflec-
tion ~r is the probability that a neutron enters the outer surface with the cosine distribution,
travels inwards and leaves it back again without colliding. It must be zero in the slab, but
not in the cylinder or in the sphere. Transmission is used instead when the leaving surface
to be crossed is different from the entering one, and it is non-vanishing here only in the
slab. Conservation applied in the cylinder or in the sphere implies that ~rb ¼ 1�P

j ~pjb,

where we have also assumed implicitly no possible transmission in the derivation of their
escape probabilities. Similarly in the slab, it is ~tab ¼ 1�P

j ~pjb for instance. Equation (25b)

can be used for Equation (25a) to obtain an expression for J�b that is suitable for substitu-
tion in Equation (24a). Equations (25) are in a general form for 1D geometries, which sim-
plify either in the slab or in the others.

The source term considers only isotropic emission, and it is composed by scattering and
fission production as in Equation (7a). In absence of external sources, the problem becomes
homogeneous with the multiplication factor k assuming the role of eigenvalue to avoid the
only vanishing solution. Equations (24) hold for any energy group, whose index is dropped
for simplicity.

We setup hereafter an algebraic system of equations for the unknown flux array ~/ of
size ðI � GÞ, flattened with the index of the spatial mesh running first. The extension of
the solution method to problems with external sources in submultiplicative media is
straightforward. Equation (24b) for bare bodies, that is in presence of vacuum boundary
condition, is rewritten as:

ðI� PSÞ~/ðnþ1Þ ¼ Pðv
 FÞ~/ðnÞ=kðnÞ, (26)

where the index n addresses power method iterations to solve the eigenvalue problem. All
matrices in Equation (26) are constructed by blocks. I is the identity matrix. The matrix P is
block diagonal and it is constituted of (transposed) matrices of reduced collision probabilities
per group, placed in increasing order from the fast groups, which are assigned to the lowest
values of the index g as usual. The matrix S is composed by G�G diagonal blocks with ele-
ments ½rs, g g0 , jdij, i, j ¼ 1, :::, I�, contrary to the matrix F which has only G blocks set by col-
umns and with elements ½�rf , g, jdij, i, j ¼ 1, :::, I�: The new estimate of the flux vector is

computed by multiplying the left side of the equation by the inverse of the removal matrix, i.e.

ðI� SPÞ�1, assuming that it is invertible. The new estimate of the eigenvalue can be obtained
by enforcing neutron conservation through the iterations, while achieving the convergence:

kðnþ1Þ ¼ kðnÞ
h~/ðnþ1ÞjF~/ðnþ1Þi
h~/ðnþ1ÞjF~/ðnÞi

:

The full eigen-spectrum can be obtained by resolving the problem for the fission pro-
duction reaction rates, showing smaller rank. First, note that ðv
 FÞ ¼ XF, with X built
by G diagonal blocks stacked per row of the form ½vg, jdij, i, j ¼ 1, :::, I�: The eigen-solver
operates then on the matrix FðI� SPÞ�1PX:
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In case the partial current is given by an albedo relation at the boundary of the cylinder
(or of the sphere), the same solving scheme still holds after redefinition of the matrix P:

P Pþ bb
1� bb~r

Eb,

with Eb ¼ ½~ebipjb, 1 � i, j � I�: This redefinition holds also for the slab in case of periodic
boundary condition, i.e. J�b ¼ Jþa : Lastly for the slab, a general relation for the right bound-
ary is

P Pþ bb
1� babb~t

2 Eb þ ba~tEa


 �
with Ea ¼ ½~ebipja, 1 � i, j � I�: The corresponding expression at the left boundary is easy
to obtain.
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