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A genetic algorithm based on novel genetic operators is implemented for the problem of nuclear fuel
loading pattern optimization. This is achieved using rank selection or tournament selection and novel
crossover operator and fitness function constructions, e.g., improved crossover and mutation operators
by considering the chromosomes as permutations (which is a specific feature of the loading pattern prob-
lem) and the ‘‘stage fitness function” that separates the different objectives of the optimization. Another
novel feature of the algorithm is the consideration of the geometric nature of the problem and the desired
loading pattern solutions. A new geometric crossover is developed to utilize this geometric knowledge
and its implementation exhibits good results. A comprehensive study is performed on the effect of differ-
ent adaptive mutation strategies on the performances of the algorithm. The new algorithm is imple-
mented and applied to two benchmark problems and used to study the effect of boundary conditions
on the symmetry of the obtained best solutions.

� 2018 Elsevier Ltd. All rights reserved.
1. Introduction

The majority of nuclear reactors are operated in cycles with
periodic complicated and expensive refueling outages. The fuel in
the reactor core is not homogeneously burned and usually a third
of the (most depleted) fuel assemblies (FAs) are replaced during
refueling. The loaded fresh FAs, together with the remaining
depleted FAs, are rearranged to form a new core configuration
(loading pattern, or LP). The new core configuration should maxi-
mize the energy production until the subsequent refuelling outage
(long cycle) while still satisfying all safety limitations and opera-
tional constraints. For example, the core excess reactivity should
be maximized to ensure a long cycle and high fuel burnup, while
maintaining the ability to control and shutdown the reactor within
the required safety margins (Turinsky, 2005; Turinsky et al., 2005;
Jayalal et al., 2014; Israeli and Gilad, 2017a).

The LP optimization problem is of great importance for electric-
ity utilities as well as for research reactors operating with limited
nuclear fuel repository. This study is of true inter-disciplinary nat-
ure in the sense that a combination of expertise in both evolution-
ary algorithms and nuclear reactor physics is required. This field of
research is active and relevant, and has been for many years, but
the successful application of modern evolutionary algorithms for
solving such problems is only just beginning (Turinsky, 2005;
Jayalal et al., 2014; Israeli and Gilad, 2017a).

A well known method used for addressing the optimization
problem of in-core fuel management is the so called evolutionary
algorithm, specifically the genetic algorithm (Goldberg, 1989;
Parks, 1996). However, many studies dealing with this problem
thus far use fairly basic and traditional implementations of the
genetic algorithm and disregard important and relevant problem
related information, such as the geometrical structure of the core
e.g., (DeChaine and Feltus, 1995; Chapot et al., 1999; Toshinsky
et al., 1999; Hongchun, 2001; Gang et al., 2002; Ortiz and
Requena, 2004; Do and Nguyen, 2007; Alim et al., 2008;
Khoshahval et al., 2011; Norouzi et al., 2013; Zameer et al., 2014)
(see also Jayalal et al., 2014 and Refs. therein). Other examples
include the use of fitness proportionate roulette wheel instead of
tournaments and linear ranking for the selection and using binary
chromosomes.

Almost all studies in this field impose symmetry restrictions on
the problem. The main reason for using symmetry constrains is an
operational one; the different primary coolant loops of the nuclear
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power plant must maintain similar thermal–hydraulic conditions
(e.g., flow rate, temperature, pressure) during nominal operation,
imposing symmetry on the reactor core power production
distribution.

On the other hand, research reactors (RRs) operating at
low power, whether cooled by one or more loops, are free of this
operational constraint of symmetry. The same is true for Integral
Reactors (IRs) in general, for Small Modular Reactors (SMRs) in par-
ticular, and especially for reactor designs characterized by a single
coolant loop (IAEA, 2014; Aydogan, 2016). Indeed, other opera-
tional and safety requirements, e.g., low power peaking factor
(PPF) or excess reactivity control, bare significant constrains on
the core loading pattern, but they do not necessarily impose
symmetry.

Obviously, there exist non-symmetric LPs that satisfy high ini-
tial excess reactivity while maintaining low enough PPF that
enable safe reactivity control. Actually, most LPs that use burnt
fuel from previous irradiation cycles, in both RRs and NPPs, are
always slightly non-symmetric, even for equilibrium cores.
Imposing symmetry on the problem, e.g., by considering 1/4,
1/6, or 1/8 core LPs, eliminates a priori any (even slightly) non-
symmetric LPs which potentially perform better than symmetric
LPs.

In this work, a genetic algorithm is developed and imple-
mented by using up-to-date selection and crossover operators
and novel fitness function (FF) constructions, e.g., rank selection
or tournament selection instead of the traditional roulette wheel
(RW) selection operator; improved crossover and mutation oper-
ators that consider the chromosomes as permutations (which is a
specific feature of the LP problem); highly adaptive mutation
strategies based on the instantaneous genetic variance of the pop-
ulation; and the ‘‘stage fitness function” that separates the differ-
ent objectives of the optimization (Israeli, 2016; Israeli and Gilad,
2017a,b).

The new algorithm is first applied to simple benchmark prob-
lems for qualification and the study of the algorithm’s components
separately, including the effect of boundary conditions on the sym-
metry of the obtained best solutions for that simple benchmark.
Then the algorithm is applied to a more realistic problem of load-
ing pattern optimization. The rest of the article is organized as fol-
lows: the genetic algorithm is described in Section 2, the nuclear
problem and the core simulator are described in Section 3, the
results for the simple benchmarks and for the realistic problem
are given in Sections 4 and 5, and the conclusions are discussed
in Section 6.
Fig. 1. A schematic description of the chromosome structure. The number of entries
in the chromosome vector equals the number of FAs in the core. It is logically
divided into N segments, where N is the number of fuel types. This structure
preserves the predetermined quantities of each FA type.
2. Algorithm

The population for the evolutionary process consists of a por-
tion of the search space. That is, the individuals in the population
are members of the search space of the optimization problem at
hand. A solution in the evolutionary process is an LP of the core,
i.e., a spatial arrangement of the FAs in the core. Some solutions
are better than others for the purposes of optimization. A good
solution in the evolutionary process is characterized by a high FF
value. In this study a restriction is imposed on the allowed solution
LPs, i.e., they are required to maintain the original fuel bank in the
initially given LP.

The evolutionary algorithm (EA) developed in this study is
based on a standard genetic algorithm (GA) with required modifi-
cations. The essentials of the basic genetic algorithm are summa-
rized in Algorithm 1 (Israeli, 2016; Israeli and Gilad, 2017a,b).
Algorithm 1 basic genetic algorithm (Israeli and Gilad, 2017a)

1: procedure GA
2: Generation zero: g ¼ 0
3: Create an initial random population of size P
4: Calculate the genetic variance of the population
5: Calculate the fitness Fi for every individual, i ¼ 1 . . . P
6: while (genetic variance > threshold) AND (g < maxG) do
7: Store the best individual for later reinsertion (Elitism)
8: Select P

2 pairs of individuals for crossover, according to
their fitness

9: Crossover chosen pairs to generate P offsprings
10: Randomly mutate a fraction l of the population
11: Replace random individual with best one from

previous generation (Elitism)
12: g ¼ g þ 1
13: Calculate the genetic variance of the new population
14: Calculate the fitness Fi for every individual, i ¼ 1 . . . P
15: end while
16: end procedure

An LP of a nuclear reactor core is simply an array of cells that
contain materials of different types, e.g., fuel, absorber, reflector.
It is a two dimensional matrix as shown in Fig. 4. It is represented
by a core vector whose entries represent the different locations of
the FAs in the core. The core vector entries are integers represent-
ing the corresponding fuel types (Israeli and Gilad, 2017a).

2.1. Chromosome representation

The chromosome is a vector of the core’s length and is logically
divided into N segments, where N is the number of fuel types. Each
segment is as long as the number of FAs of that type. The chromo-
some is a permutation of the core vector entries and the location
of a core index in the chromosome determines the fuel type it
holds: The core indices in the first part of the chromosome are of
the first fuel type, the ones in the second part contain fuel number
two, and so on and so forth (Israeli and Gilad, 2017a), as demon-
strated in Fig. 1. Each entry in the chromosome vector is called a
gene. This chromosome structure is chosen in order to preserve
the predetermined quantities of the different materials and ele-
ments of the core (Israeli and Gilad, 2017a). Moreover, this repre-
sentation gives simple and intuitive physical meaning to the
genetic variance of the population, i.e., low genetic variance indi-
cates that many chromosomes are similar in the sense that they
position the same FAs in the same locations in the core.

In this representation the same LP can be represented by differ-
ent chromosomes (any permutation of the genes within a single
fuel type segment codes for the same LP). The genes need not be
sorted in each segment. Although duplicate chromosomes of this
kind artificially increase the genetic variability of the population,
they bear no negative impact on the final results. In order to
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eliminate these duplicated chromosomes, some kind of sorting and
comparing needs to be carried out over the entire population each
generation, which might result in significant computational
overhead.
2.2. Initialization and termination

In order to begin the evolutionary process an initial population
of solutions is needed. This initial population is created randomly
as not to affect the search with unintentional bias. An example
LP from a random initial population can be seen in Fig. 2. The algo-
rithm terminates the search when most of the population has con-
verged to a single solution, that is, when the population’s genetic
variance has descended under a chosen threshold, or after a pre-
determined number of generations if not converged (Israeli and
Gilad, 2017a).
2.3. Genetic variance of the population

The population’s genetic variance is a measure of the degree of
diversity within the population of chromosomes. It is calculated by
counting chromosomal differences throughout the population, i.e.,
for every chromosome in the population the number of different
genes with respect to subsequent chromosomes is counted. More
rigorously, the population genetic variance is defined as in Israeli
and Gilad (2017a)

population genetic variance ¼ number of differences
number of genes compared

:

Given a population of size P of chromosomes of length M, the num-
ber of unique pairs is

P

2

� �
¼ 1

2
PðP � 1Þ ð1Þ

and the total number of gene comparisons is 1
2MPðP � 1Þ.

The genetic variance is close to unity for a random population
and is zero for a population of identical chromosomes. This quan-
tity is a very good measure of the population’s composition and
diversity during evolution. For example, for large selection pres-
sure (e.g., as can occur in the case of fitness proportionate selec-
tion) the genetic variance will decrease rapidly, indicating the
dominance of a single chromosome and rapid convergence of the
population towards this solution. For moderate selection pressure
the decrease in genetic variance is slower. The best way to increase
the genetic variance is through mutations, which introduce new
genetic material into the existing gene pool.
Fig. 2. A random loading pattern from the first generation of an evolutionary
process (Israeli and Gilad, 2017a,b).
There is great importance in monitoring the genetic variance of
the population during the evolution process (Whitley, 2001). Lar-
ger genetic variance means that the optimization process samples
larger portions of the search space and is less likely to converge to
local optimum (Friedrich et al., 2009). In many cases, when the
genetic variance drops rapidly, the population essentially becomes
homogeneous and there is no meaning for its size anymore (Leung
et al., 1997). Online monitoring of the genetic variance of the pop-
ulation enables better control over the process of evolution and
convergence of the algorithm through real-time parameter’s
change, also known as adaptive control (De Jong, 1975;
Grefenstette, 1986; Eiben et al., 1999; Lobo et al., 2007).

2.4. The fitness function

Through the process of genetic evolution, the population of
solutions migrates toward an optimal LP. But in order for that to
be possible there must be a way of grading the LPs in accordance
with their degree of optimality. For that purpose a function that
determines a solution’s ‘‘fitness” is constructed, namely the FF.
The FF grades the solutions of the current solution population so
that ones who better fit the optimization purposes can be selected
to become parents for the next generation of solutions and carry on
their superior genetic data (Israeli and Gilad, 2017a).

2.4.1. The single objective FF
The algorithm is initially tested using a simplified PWR core

(see Section 3.1) and a simple single objective of maximizing
keff. This objective is chosen for its relative simplicity, which
allows for an estimation of the approximate optimal solution
(Israeli and Gilad, 2017a). In case of void boundary conditions, such
an approximation is an LP in which as much fissile material is posi-
tioned as far away from the core’s boundaries as possible, minimiz-
ing neutron leakage. Hence, the anticipated LP for maximal keff
will position the high enriched FAs in the center of the core, sur-
rounded by less enriched FAs, ans so on (Israeli and Gilad, 2017b).

One example of the many single objective keff FFs is one in
which LPs are graded according to the distance of their keff values
from some preset upper limit (Israeli and Gilad, 2017a):

FFðkeffÞ ¼ 1
kmax � keff þ n

; ð2Þ

where n is used to regulate the scale of FF and control the selection
pressure. Higher n values result in weaker dominance of the best
chromosomes. The value of kmax is chosen as the upper limit for
the keff of the LP in order to prevent an LP’s keff value from exceed-
ing the limit. In a similar manner, a PPF FF is defined,

FFðPPFÞ ¼ 1
PPF� PPFmin þ n

¼ 1
PPF� 1þ n

; ð3Þ

where n is the same as in Eq. (2).

2.4.2. The multi-objective FF
The FF can have more than one objective. The objectives chosen

for this research are the maximization of keff and the minimization
of PPF. These two core parameters, keff and PPF, are reciprocally
interrelated. That is, a core that is characterized by high keff value
is most likely to exhibit high PPF value, and vice versa. This can be
easily confirmed by considering the physical meaning of each of
these parameters (Israeli, 2016; Israeli and Gilad, 2017a).

The effective neutron multiplication factor, keff, is the average
number of neutrons generated from a single fission event that
eventually induce another fission event. Therefore, the configura-
tion for keff maximization concentrates high enriched FAs together
to create areas rich in fissile material and increase the chances of
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fission. Another geometrical quality of the keff maximizing core is
minimizing neutron leakage from the core. In the case of void
boundary conditions, for example, the estimated best LP positions
as much fissile material at core center, as far away from the bound-
aries as possible, reducing neutron leakage (Israeli and Gilad,
2017a).

The PPF is defined as the ratio between the local power density
at the reactor’s hotspot and the average power density in the reac-
tor core. Hence, the configuration for PPF minimization distributes
the FAs with different enrichments more evenly throughout the
core, in an attempt to create a flat power density profile. As is evi-
dent from the aforementioned physical reasoning, the two objec-
tives have trade-off relations.

So, taking both objectives into consideration in the construction
of the FF is no simple feat. Some implementations take the form of
the weighted composite FF, creating a single FF and giving each
objective a weight in it. Others optimize one objective and place
constraints on the others. In this study, it has been chosen to exam-
ine the idea of optimizing the different objectives in stages. That is,
optimizing one while keeping the other in check, and then doing
the same for the other. This is done to decrease the complexity
of the multi-directional search, limiting it to one clear direction
at a time (Israeli and Gilad, 2017a).

The first attempt at this form of FF is the ‘‘zigzag” FF. The zigzag
FF switches between the two objectives every few generations. The
number of generations between FF swaps is dubbed a stage. The
original idea behind this approach is optimizing the population
to one objective, as much as possible for the current population,
before switching to the other objective. The problem with this
method is that the two objectives are reciprocally inter-related,
so the resulting optimized LP of one stage is most likely very bad
in regards to the other optimization objective. So the final LP
resulting from the algorithm has no reason to be dually optimized,
but rather is dependent on the optimization objective of the last
stage alone.

Improving upon this idea, stage length is controlled, limiting the
premature convergence of the population. Stage length is a defin-
able parameter of the algorithm. Limiting stage length alone,
though, is not enough, since, as mentioned above, the two objec-
tives keff and PPF have trade-off relations. Therefore, in a stage
of optimizing one objective, the other is being limited to a ‘‘neigh-
borhood” of allowed values in the vicinity of the best chromosome
in the current population, in regards to the non optimized objec-
tive of the stage. The size of the neighborhood is also an adjustable
parameter and can be decreased through the progression of the
evolution. The neighborhood size for the silent one of the two
objectives in each generation is set by the following formula
(Israeli, 2016; Israeli and Gilad, 2017a):

e ¼ max ðFFsÞ � min ðFFsÞ
f

; ð4Þ
f ¼ a� g
G

� �c
; ð5Þ

where FFs is the silent objective, a and c are controlled parameters
of the algorithm, g is the number of the current generation and G is
the maximum number of generations allowed in the evolution. The
parameter e is then the margin allowed for the silent FF to move in.
That is, when keff is the silent objective the minimum keff allowed
is max ðkeff Þ � e, and when PPF is the silent one the maximum PPF
allowed is min ðPPFÞ þ e. Any solution whose silent fitness is out-
side the allowed neighborhood is discarded by zeroing its FF. As
the evolution progresses, the size of the allowed environment e
diminishes and reaches a�1 of the max–min difference of that
stage’s silent FF.
The disadvantage of this method is that it restricts the search
very much to the search space area arrived at the end of the first
stage. It simply does not allow for a sufficiently wide spread search.
So, a more compact form of the zigzag approach is being tested. It
is the stage approach, in which the objective switch is performed
only once during the evolution. Once the population reaches a
search space region rich enough in optimized solutions for one
objective, a limit can be set on that objective and the other can
be improved. This method is different from simply setting a con-
straint upon one of the objectives from beginning of evolution on
account of the preliminary optimization stage. This optimization
prior to placing the constraint on one of the objectives allows the
constrained objective to leave the original search space area to
which it would have been limited otherwise. In other words, set-
ting a constraint too early on in the evolution limits the optimiza-
tion of the non constrained objective. With this method, the
problem is averted (Israeli and Gilad, 2017a).

2.5. Selection operator

Each chromosome has a probability to be selected to become
a parent to the next generation of LPs according to its fitness. In
this study, both fitness proportionate (FP) and linear ranking (LR)
selection probabilities are considered. With FP, the probability of
a chromosome c to be chosen (in the selection process) is deter-
mined according to PðcÞ ¼ FFðcÞ=PcFFðcÞ. It is an outdated selec-
tion method, hardly used any more in GAs, for its inherent flaws,
hereby explained. The ramification of this probability equation is
that each chromosome gets a selection probability proportional
to its FF value relative to the current population. This is a prob-
lematic approach, the problem of which lies in the selection
pressure caused. Since the selection probability the FP selection
method induces on the different solutions is proportional to
their respective FFs, the selection pressure is also dependent
upon the relative differences between those FFs (Goldberg and
Deb, 1991).

This effect results from the fact that in large difference FF pop-
ulations, the high FF solutions are likely to be selected as parents
for next generations and take over the gene pool, causing the pop-
ulation to converge towards themselves. Weaker solutions, on the
other hand, are not selected at all and disappear from subsequent
generations, contributing further to the population’s variance drop
(Blickle and Thiele, 1995). This convergence is premature if the
high FF solutions are not globally optimal but only better relative
to the current population.

On the other side of the selection pressure scale, in a population
comprised of solutions of very similar FFs, as is usually the case in
the first generation of the evolution, the better (albeit slightly)
ones do not receive any substantial selective advantage and are
given selection probabilities very close to each other. This renders
the evolutionary process powerless to gain any progress (de la
Maza and Tidor, 1991, 1993).

One possible solution is LR selection which equates the weight
of FF differences in selection probability calculation by basing it on
rank, rather than directly on FF value (Baker, 1985; Whitley, 1989).
With LR, the chromosomes are ranked according to their relative
FFs and given a selection probability linearly according to their rel-
ative rank, not their FFs. Selection probability for every chromo-
some c is calculated using a parameter, expVal, which represents
the expected number of copies of chromosome c in the selection
table (Blickle and Thiele, 1995; Baker, 1985; Grefenstette and
Baker, 1989). The parameter expVal is calculated according to

expValðcÞ ¼ 2�mþ 2ðm� 1Þðrank� 1Þ
groupSize� 1

; ð6Þ
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where m is the maximum expected number of copies for the best
individual and is in the range of 1 < m 6 2. The rank is defined such
that the worst individual has rank ¼ 1 and the best has
rank ¼ groupSize. According to its definition (Eq. (6)), higher values
of m result in greater selection pressure toward the best solution.
The groupSize parameter is the size of the group of chromosomes
from which parents are selected. Said group may include the entire
population, or a smaller group within it, as in the case of tourna-
ment selection, seen hereafter. Selection probability for chromo-
some c is then PðcÞ ¼ expValðcÞ=groupSize. So, the LR probability of
a chromosome to be selected is proportional to the expected num-
ber of its copies in the selection table, which in turn is proportional
to the chromosome’s relative rank in the population.

Selection methods used in this study include the standard FP
scheme Roulette Wheel and a Tournament selection scheme in
which set sized tournament groups of chromosomes are randomly
chosen out of the current population, from each of which one chro-
mosome is selected as parent, until the parent pool is filled
(Goldberg and Deb, 1991; Blickle and Thiele, 1995). In the Tourna-
ment selection scheme, the selected chromosome is either the best
of the tournament group or it is chosen with a selection probability
as described above, i.e., either FP or LR. Tournament size is adjus-
table and allows the algorithm selection pressure control, which
influences the convergence rate (Eiben et al., 1999; Lobo et al.,
2007), as does the value of m in expVal (Baker, 1985;
Grefenstette and Baker, 1989).
Fig. 3. Illustration of ‘‘square of core neighbors” crossover. The original parents
cores (top) and the corresponding chromosomes, with each fuel type, e.g., 1, 2, 3,
represented by different shades. Shown are the parents before the segment swap (a)
and after (b). Only relevant parts of the chromosome are shown. The segment for
crossover is the 3 � 3 rectangular neighborhood randomly chosen around the
central cell. Segment parts that are not in the core are omitted.
2.6. Crossover operator

Crossover is the genetic operator responsible for creation of
new solutions out of selected parents. It swaps gene segments
between two parent chromosomes, mixing their genetic data to
create offspring. The crossover operator created for this study is
of geometrical nature. It consists of a geometric crossover mecha-
nism based on swapping rectangular or square segments of neigh-
boring FAs (geometrically adjacent FAs) between two selected LP
parents. Since the chromosomal indices are not directly translated
to core locations, a segment of the LP is a collection of non-
consecutive chromosomal indices. The new crossover operator
enables the manipulation of genetic data in the chromosome in a
way that allows control over swapped segment’s shape and size.

Surprisingly, crossover segment shape has never before been
used as a parameter of the algorithm, though it stands to reason
it should have significant impact due to the geometric nature of
the problem. It can be chosen as one of the following (Israeli and
Gilad, 2017a):

1. Chromosome consecutive segment – A set of indices in the
chromosome between two randomly chosen cut points. Since
the chromosomal indices are not directly translated to core
locations, it is a random collection of fuel locations in the core.

2. Core consecutive segment – A set of indices between two ran-
domly chosen indices in the LP. A segment of the LP is a collec-
tion of non-consecutive indices in the chromosome.

3. Rectangle of core neighbors – A set of chromosomal indices
forming a rectangular segment in the LP.

4. Square of core neighbors – A set of chromosomal indices form-
ing a square shape around a randomly chosen index in the LP.

Controlling crossover segment size provides control over the
extent of crossover genetic information exchange. Large segment
swaps at beginning of evolution allows for the unoptimized chro-
mosomes of the early generations to exchange large portions of
genetic information, exploring the search space. On the other hand,
the gradual decrease of the segment size toward later generations
allows for finer genetic alterations in the good solutions found.
Segment size is controlled using slightly different formulae, each
adapted for its crossover form. A representative example is the for-
mula for the case of the square of core neighbors:

a ¼ g IþJ
2

� �� 	
if g < gx

g IþJ
2

� �� vðgÞ� 	
if g P gx

(
; ð7Þ

where g is the maximum fraction of the core diameter size (approx-
imated by IþJ

2 ; I and J are the number of columns and rows, respec-
tively, in the LP, and vðgÞ is a decreasing factor that limits the
segment’s maximum size from a pre-determined generation, gx,
onward. The functional form of the decreasing factor is chosen as

vðgÞ ¼ r
rþ ðg � gxÞ

; g P gx; ð8Þ

where r is a parameter that influences the decrease rate. The larger
r is the slower the decrease.

Option 1 is the standard crossover operator widely used in
nuclear fuel management problems (Jayalal et al., 2014), whereas
options 2–4 are novel and allow control over segment shape. Seg-
ments’ sizes are adaptive throughout the evolution. An example is
shown in Fig. 3, where a FA is randomly chosen. Then, the algo-
rithm randomly chooses the square size; in this case, a 3� 3
square (with the selected FA in the middle of the square neighbor-
hood). Some of the options allow segment size to decrease as a
function of generation, relaying the advantages mentioned above.

2.6.1. Fixing the chromosome after crossover
For GAs whose solutions are of permutational nature a simple

segment swapping crossover results, in most cases, in an inapplica-
ble chromosome that is no longer a permutation or a legal
chromosome.

As mentioned in Section 2.1, the genes in the chromosomes are
indices in the core and chromosomes are permutations of those
indices; so any chromosomal recurrences caused by the crossover
mechanism must be fixed. That is, there can not be a core cell
denominator that appears both in the first and second parts of
the chromosome, since it’s counterpart in the respective LP should
then need to contain two different FAs at the same site in the core.
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The correction is done by a separate function which, outside the
chosen segment, swaps recurring indices between the two chro-
mosomes. A more detailed and elaborated description of the
genetic operators can be found in (Israeli, 2016) and in (Israeli
and Gilad, 2017b).
2.7. Mutation

The evolutionary search is limited to the regions of reach
through population’s existing genetic pool. If new genetic data is
not available, the algorithm’s reach is limited to the local optima
of those regions only. The mutation operator is used to avoid this
stagnation by introducing new genetic data into the chromosomes
of the population (Goldberg, 1989).

At chromosomal level, the mutation operator swaps two ran-
dom genes within a chromosome. Since in this study the location
of the genes in the chromosome is the trait that carries genetic sig-
nificance, this action introduces new information into the genetic
pool. For example, if none of the chromosomes contain the gene
‘‘a” in location ‘‘A” then due to the nature of the crossover operator,
neither can any of the offspring. The only possibility to attain this
LP is through the mutation of that gene. At population level, the
mutation operator mutates a randomly chosen portion of the pop-
ulation at each generation. The portion size is normally distributed
around an adjustable predetermined value that is an algorithm
parameter, namely the mutation rate l. This mutation rate param-
eter has a great effect on search stagnation (David Schaffer et al.,
1989; Israeli and Gilad, 2017b).

The population can be mutated in several ways. The simplest
one is the constant mutation rate. A more sophisticated approach
is an adaptive mutation rate (De Jong, 1975; Grefenstette, 1986;
Eiben et al., 1999; Lobo et al., 2007) according to the genetic vari-
ance of the population, which prevents the population from
becoming homogeneous. Once the genetic variance of the popula-
tion decreases below some threshold, the mutation can be intro-
duced either as peaks (very short and large spikes) in the
mutation rate or as gradual increase. Another popular approach
is the time-dependent (decreasing) mutation rate (Fogarty, 1989;
Bäck, 1992; Smith and Fogarty, 1996). The idea behind this
approach (Srinivas and Patnaik, 1994) is allowing the exploration
of the search space at beginning of evolution, through the insertion
of abundant new genetic data, and convergence of the population
as evolution progresses. The formula used to decrease the muta-
tion rate depends on the difference between current generation,
g, and the generation in which decrease begins gl. The pace of
decrease is controlled by lr parameter; high lr values lead to a
slower decrease pace,

lðgÞ ¼
l0 if g < gl
l0 � lr

lrþðg�glÞ if g P gl

(
: ð9Þ
Fig. 4. A schematic layout of a typical initial loading pattern of a simplified PWR
core (core #1). Fuel types 1/2/3 (also distinguished by different colors) represent
different enrichment levels of 3.1/2.4/1.6 w/o 235U, respectively (Israeli and Gilad,
2017a,b). (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
3. Methodology

Two different cores are considered in this study. The first core is
used for basic benchmarks of the algorithm performances during
its development, hence it is chosen to be as simple as possible,
yet not too simple (e.g., Pereira et al., 1999). The simple bench-
marks approach enables the evaluation and characterization of dif-
ferent components of the algorithm separately and the validation
of algorithm performance against known (or expected) solutions.

The second core is used during later and more advanced stages
of the study to evaluate the algorithm performance and to solve a
more practical and complicated loading pattern problem, hence it
is more realistic and complex.
3.1. Benchmark problem #1

This core is a simplification of a typical advanced PWR with
17 � 17 rectangular lattice containing 257 FAs of three different
235U enrichment levels, i.e., 3.1, 2.4, and 1.6 w/o 235U. The axial
composition of a FA is assumed to be homogeneous and all FAs
are assumed to be fresh. Axial boundary conditions are assumed
to simulate the axial reflector whereas the radial boundary con-
ditions can be changed in the range between void and fully
reflective. The number of FAs of each type is assumed to be con-
stant. This core is mainly used with a single objective FF (opti-
mizing keff) for the qualification of the algorithm during its
development stages and for studying the effect of boundary con-
ditions on the symmetry of the solutions. A schematic view of a
typical initial core layout and initial loading pattern is given in
Fig. 4.

3.2. Benchmark problem #2

This core is a 100% MOX PWR core designed to maximize Pu
consumption (Fridman and Kliem, 2011). It is arranged in an opti-
mized equilibrium LP with optimized burnable poison (BP) load-
ing. It has 193 FAs, an 18-month fuel cycle and a 3-batch fuel
management scheme with five fuel types: fresh fuel with 0, 16,
and 24 wet annular burnable absorber (WABA) rods, and once
and twice burned FAs. The LP has 1/8 core symmetry. A quarter
core section is shown in Fig. 5. Since this core is an equilibrium
core and contains once and twice burnt FAs, a three-dimensional
spatial burnup distribution is accounted for during the full core
three-dimensional simulations. This core was used with a double
objective FF for optimizing keff and PPF.

The unit cell calculations including the generation of few-group
cross section data sets were performed with the HELIOS lattice
code, utilizing the current coupling and collision probabilities
methodology for solving the transport equation in a two-
dimensional (2D) unstructured mesh and the ENDF/B-VI evaluated
data files with 190 neutron and 48 gamma energy groups (Fridman
and Kliem, 2011).



Fig. 5. A schematic layout of a quarter core layout and equilibrium loading pattern
of a MOX PWR core (Fridman and Kliem, 2011; Israeli and Gilad, 2017a) (core #2).
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3.3. The core simulator

The core simulator is used to evaluate the physical quantities of
the solutions (LPs), e.g., keff and PPF using full core three-
dimensional model, in order to calculate their FF. The core simula-
tor used in this study is DYN3D (Grundmann et al., 2000), which is
a few-group diffusion code for three-dimensional steady-state and
transient core calculations in square and hexagonal fuel element
geometry with thermal hydraulic feedback. The code, developed
at Helmholtz Zentrum Dresden-Russendorf (HZDR), can also per-
form detailed depletion calculations. The two- or multi-group neu-
tron diffusion equation is solved by nodal expansion methods. A
thermal–hydraulic model (FLOCAL) of the reactor core and a fuel
rod model are implemented in DYN3D. The reactor core is modeled
by parallel coolant channels which can describe one or more fuel
elements. In this work, the code is used only for static (i.e., eigen-
value) calculations without thermal–hydraulic feedback.
3.4. Result presentation

The code written and used for this study is an amalgam of dif-
ferent genetic operators and schemes, each with many different
parameters, each with many different possible values. In the
research on which this article is based, many different combina-
tions of those parameters are tested. Since specifying all operator
parameter choices for each result presented would burden the text,
only data relevant for each result or comparison is presented.
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4. Results for benchmark problem #1

4.1. Adaptive geometric crossover

Influence of the adaptive geometric crossover, that limits seg-
ment size beyond a certain generation (gx, see Eqs. (7) and (8)),
is manifested in a dramatic improvement of the results. An evolu-
tion with gx < 50 leads to rapid convergence to bad solutions. Good
results start appearing above gx P 50 and peak around gx ¼ 200, as
shown in Figs. 6 and 7. The graphs present the averaged results of
several realizations using geometric crossover with decreasing seg-
ment size (#4 from Section 2.6).

Results shown in said graphs indicate that the larger gx is, i.e.,
the later the crossover swapped segment size is restricted, the
slower the convergence rate is. This phenomenon can be explained
through the understanding that swapping small segments only
allows for making small adjustments to current population. In
other words, it is oriented towards finding local optima of the cur-
rent search space area. Hence, limiting the size of the swapped seg-
ment in the early stages of evolution hinders population’s ability to
explore the search space.
4.2. Population variance and selection pressure

Higherm values in Eq. (6) increase the selection pressure, which
dramatically affects the convergence rate and the genetic diversity
of the population, as shown in Fig. 8. When the variance of the pop-
ulation is 1 (0), all chromosomes are completely different (identi-
cal). This has significant implication on the ability of the
algorithm to escape local optima and sample larger areas of the
search space. The graph presents the averaged results of several
realizations using LR selection.
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4.3. keff and selection pressure

It can also be noted that the selection pressure induced by the
value of m in the expVal formula (Eq. (6)) has significant influence
over the results obtained. Greater selection pressure causes greater
pressure of convergence toward the better solutions. Too great a
pressure results in premature convergence to local optima results,
while a pressure too low hinders the population’s convergence.
This phenomenon can be seen in Fig. 9. It presents the averaged
keff values of optimization with different m values. Every point
on the graph is the average value of several realizations using LR
selection.

4.4. Symmetry and boundary conditions

The assumption of symmetrical loading patterns dominantly
underlies the entire field of loading pattern optimization of nuclear
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Fig. 9. The averaged keff for different selection pressures (m values).
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d) e)

Fig. 10. Boundary conditions’ effect on the symmetry of the best LP for maximal keff .
respectively. Different colors indicate different enrichment, with red (green) indicating
legend, the reader is referred to the web version of this article.)
power plants. This is of course for a good reason, i.e., the primary
coolant loops (and other components of the steam supply system)
are symmetrically arranged around the reactor pressure vessel and
the nuclear core within. Hence, symmetry in the power and mass
flow distribution is a real necessity. Moreover, symmetrical loading
patterns are much more intuitive, and nuclear engineers in charge
of the plant fuel management indeed rely to some extent on this
intuition and on their experience in designing core loading
patterns.

However, the symmetry requirement imposed on the core by
coolant loops and steam supply systems is removed once other
types of reactors or critical facilities are considered, e.g., research
reactors. In this section, and as an academic exercise, it is demon-
strated that in some cases the best LPs are not symmetric and are
very counter-intuitive.

Consider a bare reactor core with void boundary conditions.
Using our intuition as reactor physicists, the spatial arrangement
of FAs that maximizes keff is the one that minimizes the neutron
leakage. This implies the positioning of as much fissile material
as possible away from the core boundaries, i.e., in its center, as
shown in Fig. 10a. This is a good example where human intuition
works well, since this is only a very simple problem and the best
solution is the intuitive symmetrical one.

Now, consider the same reactor core with completely reflective
boundary conditions. In this exercise, the best (i.e., keff maximiz-
ing) LP produced by our algorithm, shown in Fig. 10f, is far from
the immediately intuitive symmetric design. The range of opti-
mized LPs corresponding to the range of different boundary condi-
tion is also shown in Fig. 10b–e. As shown, increasing the reflector
gain from 0 (void) to 1 (reflective) results in the gradual transition
of the bulk of more enriched FAs towards the boundary, while
keeping the clear separation between the differently-enriched FAs.

This is one of the predicted possible results of the exercise,
another one being the splitting of the single large central cluster
of highly enriched FAs to two smaller clusters, one remaining in
c)

f)

The albedo values are 0 (void), 0.8, 0.85, 0.87, 0.9, and 1 (reflective) for plots a-f,
high (low) enrichment. (For interpretation of the references to colour in this figure
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the center while the other one migrates to the corner of the core. In
retrospect the physical reasoning for the solution is simple: it exhi-
bits the optimal balance between neutron leakage due to proximity
to core boundaries on the one hand and the boundaries neutronic
reflection on the other. This explanation is corroborated by the
eventual results.

It can be seen that the fully reflective boundaries core solution
has 90 degrees symmetry, and the question might be asked why is
this orientation the one that emerges. The answer being that the
orientation determination is completely chaotic and depends (with
extremely high sensitivity, therefore chaotically) on initial condi-
tions and the stochastic progress of the evolution. That is, at some
point along the evolution a cluster of highly enriched FAs is assem-
bled at some position in the core. The proximity of near core
boundaries, and other clusters, affect the cluster to grow near to
them. At the end, the final position of the high enriched cluster
cannot be a priori predicted since the core structure itself has 90
degrees symmetry.

Given that modern neutron reflector designs minimize the leak-
age to approximately 3%, this could imply that there may be
slightly asymmetric LPs which are operationally valid and superior
to symmetric ones, both in multi-loop NPPs and in SMRs or RRs
cores.
Table 1
PPF values for the constant and peak mutation strategies.

Mutation strategy Constant Mutation Rate Peak Mutation
Mutation Rate l

0.01 1.4212 1.3622
0.05 1.4329 1.4213
5. Results for benchmark problem #2

5.1. Population variance and mutation

As previously mentioned, the genetic variance of the population
is a very good measure of population composition and diversity
during evolution. The best way to increase genetic variance is
through mutations, which introduce new genetic material into
the existing gene pool. High genetic variance means the optimiza-
tion process samples larger portions of the search space and is less
prone to local optimum convergence.

Experimenting with different mutation strategies and parame-
ters yields interesting results and reveals new insights into the
relationship between mutation rate, population variance, and con-
vergence. Firstly, the constant mutation rate strategy is applied.
Examples of the resulting optimizations are shown in Fig. 11.
One can see that the behavior of population variance is not consis-
tent. It is very much affected by the random construction of initial
population and stochastic changes throughout evolution. This
makes it hard to control the convergence of the population and
exposes the population to feedback effects that lead to premature
convergence, as explained later. Some tactics are attempted to
avoid the problems of the constant mutation rate strategy, which
are presented here with their effect on the evolution.

One effect of different mutation strategies on the genetic vari-
ance of the population is shown in Fig. 12. As demonstrated, high
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Fig. 11. Constant mutation ra
(low) mutation rate leads to higher (lower) genetic variance
throughout the evolution. Also shown is the effect of two different
adaptive mutation mechanisms on genetic variance. The first has a
constant mutation rate throughout evolution, and the second has a
nominal low mutation rate with peak events every 10 generations.

The purpose of the different strategies is to prevent the popula-
tion from converging too quickly, missing global optima. In Fig. 12
the impact of one of those strategies can be seen. It presents pop-
ulation variance of the constant mutation rate and of the peak
mutation rate mutation strategies. The optimization objective of
those optimizations is minimizing PPF. It can be clearly seen that
the peak mutation succeeds in maintaining higher variance values
in later stages of the evolution with respect to constant mutation
rate. It does so by increasing mutation rate to l ¼ 10 every 10 gen-
erations, thus maintaining genetic variance. More importantly,
peak mutation optimizations achieved lower PPF LPs, as can be
seen in Table 1. These results support the claim that higher popu-
lation variance permits the exploration of the search space, allow-
ing the discovery of better LPs. Fig. 12 and Table 1 present the
averaged results of several realizations using different mutation
schemes, namely the constant rate and adaptive mutations with
base mutation rates of 0.01 and 0.05.

Another aspect of the mutation-variance-convergence relation-
ship reveals itself in the exploration of the decreasing mutation
rate and the variance-dependent mutation rate variations of the
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Fig. 14. Variance-dependent, decreasing mutation rate. Baseline mutation rate of
0.03, low (high) variance threshold of 0.4 (0.8).
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mutation operator. Decreasing mutation rate is used as to allow
the population to converge in the final stages of the evolution.
The variance-dependent mutation rate increases or decreases the
mutation rate (by some pre-defined factor) according to the value
of the population variance. That is, two population variance thresh-
olds are determined, high and low. Population variance exceeding
the high variance threshold decreases the mutation rate to the
smaller one of two possible values: 0.9 of its current value, or
0.02. Alternatively, if the population variance drops below the
low threshold, mutation rate is increased to the higher value out
of: 2 times the current rate, or 0.9.

This variation of the mutation operator shows clearly the con-
nection and influence of the mutation rate on the variance of the
population. Fig. 13 displays the results of an optimization with
decreasing, variance dependent, mutation rate. The mutation
parameters chosen for this optimization are: a baseline mutation
rate of 0.03, a high variance threshold of 0.7, and a low variance
threshold of 0.05. It can be seen that population variance is close
to 1 in the beginning of evolution and descends along the genera-
tions. Note also that as variance is higher than the high threshold of
0.7 in early generations, mutation rate is not only decreased
according to the decreasing mutation scheme, but is also multi-
plied by a factor of 0.9. The decreasing factor is removed once pop-
ulation variance drops under the high threshold. This can be seen
in generations 33–34, where population variance drops below 0.7
and mutation rate jumps from 0.018 to 0.02. Another escalation
in mutation rate can be seen between the generations 114 and
115, when variance drops below the threshold of 0.05, and muta-
tion rate jumps from a value of 0.011 to 0.022.

It is important to note that the jump in mutation rate slows
down the rate of decrease of population variance. The graph of
population variance can be seen to go from decreasing rapidly to
being convex and slowing down the rate of decrease after both
of the mutation rate jumps. This shows that the jump in mutation
rate supplies the population with genetic diversity to slow down
convergence and allow further optimization.

This relationship between mutation rate and population vari-
ance can be seen clearer still in Fig. 14, which presents the results
of an optimization with decreasing, variance-dependent, mutation
rate, and the following mutation parameters: baseline mutation
rate of 0.03, a high variance threshold of 0.8, and a low variance
threshold of 0.4.

The phenomenon of population variance drop, mutation jump
and variance graph convexity can be seen clearer yet in Fig. 15,
which shows the results of an optimization with decreasing,
variance-dependent, mutation rate, and the following mutation
parameters: baseline mutation rate of 0.03, a high variance thresh-
old of 0.8, and a low variance threshold of 0.05. Comparing the two
figures it should be noted that the higher variance threshold of the
0 50 100 150 200
generation

0.01

0.015

0.02

0.025

0.03

m
ut

at
io

n 
ra

te

0

0.5

1

1.5

2

po
pu

la
tio

n 
va

ria
nc

e 
an

d 
m

in
im

um
 P

PF

mutation rate
pop var
min ppf

X: 196
Y: 1.487

Fig. 13. Variance-dependent, decreasing mutation rate. Baseline mutation rate of
0.03, low (high) variance threshold is 0.05 (0.7).
Fig. 15 optimization causes an earlier mutation rate increase that
elevates the entire mutation rate graph. This promotes more
genetic diversity throughout the evolution, which, as before, slows
down convergence and allows further optimization (resulting in
better final solutions).

The effect of raising the lower variance threshold can be
observed in Fig. 16, which present the results of optimizations with
decreasing, variance-dependent, mutation rate, and the following
mutation parameters: baseline mutation rate of 0.03, a high vari-
ance threshold of 0.6 and 0.5, respectively, and a raised low vari-
ance threshold of 0.1. In both optimizations there can be seen a
drop in population variance under the low threshold of 0.1 around
the 115th generation, which is answered by multiplying mutation
rate by a factor of 2. The effect of the raised mutation rate is appar-
ent, and a ‘‘bump” in population variance can be seen around the
150th generation, when variance rises back up above the low
threshold. The low threshold can be understood, than, to provide
the population with genetic variance toward the end of evolution,
when variance is very low. That is, it provides a ‘‘last attempt” at
escaping local minima in which the population might have been
stuck before final convergence.

Fig. 17 shows the benefit of raising both thresholds. Firstly, the
entire graph of mutation rate is raised, so the population is pro-
vided with more genetic variety throughout the evolution. Sec-
ondly, the ‘‘last attempt” mutation rate bump occurs earlier in
the evolution, and supplies the population with a diversity injec-
tion which helps it to avoid stagnation. Specifically, in this opti-
mization, stagnation can be seen to occur between generations
50 and 80, where population variance observably goes down and
drops below the low threshold of 0.4 whereas the minimal PPF
hardly changes. Mutation rate is then multiplied by 2, injecting
the population with new genetic data. Two things then occur that
should be noted: first, further optimization of the minimal PPF is
found, and second, the decrease rate of the population variance is
slowed down and its graph becomes convex.

Summing the analyses, the phenomena are interlinked thus: An
individual is produced during the evolution, which is fittest of all
others in the current population, reflecting the existence of a local
minimum in the search space. It then begins taking over, which
causes a decrease in variance and reduces search effectiveness.
This is a positive feedback loop that left undisturbed causes prema-
ture convergence. The variance threshold method (or double-
threshold method) is one way to introduce genetic variance in
response to the search state (i.e., in an adaptive manner) and curb-
ing the feedback process, to allow escape from local minima and
further optimization.
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Fig. 15. Variance dependant, decreasing mutation rate. Baseline mutation rate of 0.03, low (high) variance threshold of 0.05 (0.8).
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Fig. 16. Variance dependant, decreasing mutation rate. Baseline mutation rate of 0.03, low (high) variance threshold of 0.1 (0.5 left, 0.6 right).
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Fig. 17. Variance-dependent, decreasing mutation rate. Baseline mutation rate of
0.03, low (high) variance threshold of 0.4 (0.8).
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5.2. Random vs. geometrical crossover

When optimizing keff alone, the geometrical crossover proves
most successful. When introducing the objective of minimizing
PPF as well, it is necessary to compare the two crossover methods
once again. The geometric, ‘‘chunk swapping” crossover is initially
created with the purpose of assisting the algorithm in achieving
the concentric circle pattern of the keff optimizing core. This pat-
tern is a non–homogeneous one in which each of the circles is a
different region with different FA properties. Therefore, the geo-
metric crossover might not, a priori, suit the PPF objective, the
optimizing core of which is very different in nature and structure.
The chunk swapping geometric crossover seems much too crude to
succeed in building the fine checkers like pattern of the optimal
PPF core configuration. It initially seems to lack the required reso-
lution. This is the reason for the introduction of decreasing seg-
ment size into crossover. It is introduced with the purpose of
allowing finer resolution changes toward the end of evolution,
when the LPs found are close to optimal and require small
improvements.

In that sense, the random crossover which swaps a random set
of cells might at first seem more suited for the purpose of PPF opti-
mization. The random pattern of the random crossover cell seg-
ment is intuitively better fitting for creating homogeneous
patterns. When tested, though, the random crossover does not dis-
play any advantage over the geometric one in the single objective
optimization of PPF or in the multi-objective optimization of both
keff and PPF.

The results shown in Table 2 are a demonstration of the consis-
tent trend observed, suggesting the geometric crossover is prefer-
able. They are the averaged results of several realizations. As can be
seen, the geometric crossover cores have better values, i.e., higher



Table 2
Random vs. geometrical crossover (Israeli and Gilad, 2017a).

Crossover Non geometric Geometric

keff 1.0076 1.0081
PPF 1.29 1.29

46 E. Israeli, E. Gilad / Annals of Nuclear Energy 118 (2018) 35–48
keff for the same PPF values. The results shown all belong to LPs
produced via the same GA procedure and parameters, with only
crossover method changed. Optimizations are run using non geo-
metric and geometric crossovers, namely 1 and 4 from Section 2.6,
both with decreasing segment size.

5.3. Stage FF

When testing the zigzag FF described in Section 2.4.2 a sort of
‘‘breathing” effect of the LPs produced along the evolution is
observed. That is, the best produced LPs seem to change in config-
uration according to the optimization objective currently used in
the evolution. The cause of the phenomenon is the two very differ-
ent configurations of the two objectives’ optimal LPs and the
reciprocal-relations between them. In the stages of keff optimiza-
tion the LPs produced resemble the optimal keff core, i.e., concen-
trating the high enrichment fuel in core center, while in the PPF
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and the number of generations is 1000.
optimization stages the LPs seem to spread high enrichment FAs
more evenly throughout the core and surround them with low
enrichment FAs. The breathing effect is the continuous ‘‘swinging”
of the best produced LPs between the two different patterns
throughout the evolution, without convergence. The effect is
demonstrated in Fig. 18, where a representative section of the evo-
lution is shown. This indicates the flaw in the FF, which prevents
convergence, as discussed in Section 2.4.2.

Fig. 19 features two histograms of the evolution of one of the
optimizations. It presents the distribution of the population in
every generation of the evolution with respect to keff and PPF sep-
arately. In every generation there is both an LP that holds the high-
est keff value and one that holds the lowest PPF value. The
histograms presented allow one to follow those values in the pop-
ulation through the evolution.

Through these histograms the effect of the stage FF on the evo-
lution is plainly displayed. The histograms are the result of an opti-
mization with a stage FF variation in which the objective change
takes place once half the population reaches PPF threshold. One
can observe the rather random distribution in both values at begin-
ning of evolution, the objective switch at the 169th generation, as
well as the process of convergence to a single parameter value (at
around the 300th generation). These phenomena are apparent in
the histograms, where an evident shift to the left (the lower PPF
region) of the populations’ values during the PPF minimization
stage, and a swing back to the right after the optimization moves
to keff can be seen. The LP obtained using the stage FF, which cor-
ge
ne
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ith respect to keff and PPF separately. The population’s size in this simulation is 500

16

16 16

24 16 16

16

fresh
once burnt
twice burnt
reflector

Fig. 20. The LP obtained using the stage FF, which corresponds to the optimization
shown in Fig. 19 with keff ¼ 1:0088 and PPF ¼ 1:29. The number in the fresh FAs
indicates the number of WABA rods.



Table 3
Stage FF comparison of different stage lengths (Israeli and Gilad, 2017a).

Stage 50 150 300 1001
PPF limit 1.29 1.27 1.22 1.29

keff 1.0069 1.0056 1.0014 1.001
PPF 1.28 1.27 1.22 1.20
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responds to the optimization shown in Fig. 19 is shown in Fig. 20
with keff ¼ 1:0088 and PPF ¼ 1:29.

Another purpose the stage FF serves is allowing investigation
into the structure of the problem. It allows checking the limits of
the PPF of LPs while maintaining a high multiplication factor. To
work with lower PPF thresholds, the population must be allowed
enough generations to migrate to a PPF optimized area of the
search space. The averaged results of several realizations can be
seen in Table 3.
6. Conclusions

New genetic algorithms are developed by using up-to-date
selection operators, novel crossover operator and novel FF con-
structions. The algorithm is implemented and applied to bench-
mark problems and used to study the effect of boundary
conditions on the symmetry of the obtained best solutions.

The adaptive geometric crossover (Sections 2.6 and 4.1) proves
better than the standard (non-geometric) one. Results shown in
Figs. 6 and 7 indicate that obtaining globally good solutions is more
easily achieved by delaying the limitation of the segment size to
later stages of the evolution (larger gx, see Eqs. (7) and (8)), after
the population has already travelled sufficiently to close in on glo-
bal optima areas.

Additionally, the proposed geometric crossover takes the geo-
metrical nature of the problem at hand into consideration, utilizing
regularly overlooked information. Results show that using the
adaptive geometric crossover results in better LPs not only for
the simpler keff optimization but also for the dual objective opti-
mization of both keff and PPF.

The genetic variance of the population is defined (Section 2.3)
and proposed as a valuable measure for monitoring and controlling
the convergence of the algorithm. The behavior of the genetic vari-
ance throughout the evolution process is successfully used in
studying other parameters of the algorithm, e.g., adaptation of
the geometric crossover (Fig. 6), selection pressure (Fig. 8), and
mutation strategies (Fig. 12).

It is shown that higher genetic variance diminishes the likeli-
hood of converge to local optimum and that when genetic variance
drops rapidly, the population essentially becomes homogeneous so
there is no meaning for its size anymore. The results mentioned
above indicate that the genetic variance of the population can be
used for real-time parameters’ adaptation for better control of
the algorithm performances.

An important phenomenon worth noting relates to mutation
rate and its relation to the rate of change of the population vari-
ance. When an individual superior to the rest of the current popu-
lation is formed during the evolution, it is likely to take over and
begin a positive feedback loop of variance decrease that results
in premature convergence to the local minimum found. In other
words, local minima are potential stagnation points of the search.
Variance-dependent mutation rate is one way of curbing those
feedback effects. It does so by injecting the population with genetic
diversity when needed, thus increasing the potential of further
optimization and escape from local minima. The comprehensive
research, selected results of which are presented in this article,
shows that adaptive mutation schemes are highly beneficial to
the optimization process and provide additional and useful control
measures over the stochastic optimization process.

Increased selection pressure (higher m values in Eq. (6)) dra-
matically affects the convergence rate and the genetic diversity
of the population (Fig. 8). However, too great a pressure results
in premature convergence to local optima results, while a pressure
too low hinders the population’s convergence. This phenomenon
can be seen in Fig. 9.

The effect of different mutation strategies (constant and peak
mutation rate) on the algorithm performances are studied
(Fig. 12). The results indicate that as long as the mutation strategy
is able to sustain the genetic variance of the population above
some level (especially in later stages of the evolution), thus pre-
venting the complete genetic homogenization of the population,
the obtained results are improved (e.g., Table 1). These results sup-
port the claim that higher population variance permits wider
exploration of the search space, allowing the discovery of better
LPs.

The intuitive, yet untested, assumption as to LPs’ symmetry has
been put to the test. In the modern GA optimization world,
advanced methods discard, if possible, any potentially limiting
influences of human intuition. An example of such limiting influ-
ences can be seen in the case of the completely reflective boundary
conditions (Fig. 10). It shows that in some cases, placing synthetic
symmetry restrictions upon the LPs can prevent the creation of the
optimal one. The example also shows that the matter of symmetry
in the LP must be considered. It is not as inherently and immedi-
ately justified to assume symmetry in all cases as one might think.
It is a question that promotes more research.

Finally, the multi-objective optimization problem has been
addressed in a new way, in an attempt to simplify it and minimize
the objectives from interrupting one another (Fig. 19). The stage FF
has made it possible to determine the desired direction of move-
ment through the search space of the problem with relative ease,
confining each objective to a stage of its own.
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