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Novel Genetic Algorithms for
Loading Pattern Optimization
Using State-of-the-Art Operators
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Novel genetic algorithms (GAs) are developed by using state-of-the-art selection and
crossover operators, e.g., rank selection or tournament selection instead of the tradi-
tional roulette (fitness proportionate (FP)) selection operator and novel crossover and
mutation operators by considering the chromosomes as permutations (which is a specific
feature of the loading pattern (LP) problem). The algorithm is applied to a representative
model of a modern pressurized water reactor (PWR) core and implemented using a single
objective fitness function (FF), i.e., keff. The results obtained for some reference cases
using this setup are excellent. They are obtained using a tournament selection operator
with a linear ranking (LR) selection probability method and a new geometric crossover
operator that allows for geometrical, rather than random, swaps of gene segments
between the chromosomes and control over the sizes of the swapped segments. Finally,
the effect of boundary conditions (BCs) on the symmetry of the obtained best solutions is
studied and the validity of the “symmetric loading patterns” assumption is tested.
[DOI: 10.1115/1.4035883]

1 Introduction

The vast majority of nuclear reactors are operated in cycles,
i.e., they must be periodically refueled due to fuel depletion dur-
ing normal operation. This refueling outage is a complicated and
expensive procedure that usually necessitates halting the reactor
and opening the reactor pressure vessel. The fuel depletion is not
homogeneously distributed throughout the core, and usually, the
most depleted fuel assemblies (FAs) are replaced (typically 30%
for power reactors) in each refueling. The loaded fresh FAs,
together with the remaining depleted FAs, are rearranged to form
a new core configuration (loading pattern, or LP). The new core
configuration must maximize the energy production until the sub-
sequent refueling outage (long cycle) while still satisfying all
safety limitations and operational constraints. For example, the
core excess reactivity should be maximized to ensure a long cycle
and high fuel burn-up, while maintaining the ability to control and
shut down the reactor within the required safety margins [1].

This optimization problem is characterized by a huge search
space and is a multiobjective, nonlinear, nonconvex, NP-hard
combinatorial problem [1,2]. In a standard pressurized water reac-
tor (PWR) nuclear power plant (NPP) core, there are typically
between 150 and 250 FAs. Of those Fas, there are many types that
differ in material composition (enrichment, burn-up degrees,
burnable poison configuration, etc.). For example, a core of 200
FAs of ten different types (20 FAs per type, for simplicity) has
approximately 200!=20!� 10 � 10355 different possible core con-
figurations. Suppose the calculation and evaluation of one core
takes only 1 s, going through the entire search space in search of
the best configuration would take approximately 10348 yrs. The
age of the universe, for comparison, is �1010 yrs.

Therefore, one must find a more economical search method.
This study deals with the implementation of genetic algorithms
(GAs) for solving the optimization problems of FA LPs in the
reactor core.

The GA is a well-known method used for addressing the opti-
mization problem of in-core fuel [3,4]. However, many studies

dealing with this problem use fairly basic and traditional imple-
mentations of the GA, disregarding the geometrical structure of
the core and imposing symmetry restrictions on the problem, e.g.,
Refs. [5–20]. A good example of this approach is the use of the fit-
ness proportionate (FP) roulette wheel (RW) instead of tourna-
ments and linear ranking (LR) for the selection, neglecting the
permutationlike nature of the core LP representation vector, etc.

In this work, novel and modern GA methods are developed,
implemented, and evaluated using different case studies, which
account for the geometric structure of the core. The effect of
boundary conditions (BCs) on the symmetry of the core configura-
tion is also studied.

This study is of interdisciplinary nature, and it includes both an
algorithmic approach rooted deep in computer sciences and an
applicable approach for evaluating the algorithms performances
using more realistic cases. In order to develop and test new
genetic operators, the nuclear part of the problem is greatly sim-
plified, thus reducing the complexity and noise which are not
related to the algorithmic study. This approach enables one to bet-
ter understand and characterize the newly developed algorithms.
This paper summarizes the algorithmic part of the research and
hence focuses on the algorithmic approach rather than on realistic
implementation. It should be noted that the second part of this
study adopts a much more realistic approach by considering a
well-characterized PWR core and including the power peaking
factor (PPF) as an additional optimization objective. These results
will be published elsewhere.

2 Methodology

2.1 LPs and keff. The effective neutron multiplication factor,
keff, is the average number of neutrons generated from a single fis-
sion event that eventually induce another fission event. The
remaining neutrons are either absorbed in nonfission reactions or
leave the system (leak) without being absorbed. NPPs are oper-
ated (most of the time) in a critical state that sustains the nuclear
chain reaction, i.e., keff¼ 1.

In practice, due to other factors affecting the core’s criticality,
and especially the need for long irradiation cycles, the core design
should possess higher keff values. One way of achieving high keff
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values is by clustering the most highly enriched fuel together, sur-
rounding it with the next level enrichment fuel, and so on, in a
concentric circles pattern of decreasing enrichment. This spatial
arrangement of the FAs increases keff since a substantial quantity
of highly enriched fuel packed in close proximity causes the neu-
trons emitted from fission to “see” more fuel, thus increasing the
likelihood of inducing more fissions—effectively increasing keff.

This theoretical pattern is the result of the strong effects the spatial
arrangement of the different FAs in the reactor core have on the prob-
abilities of fission neutrons to engage in different nuclear reactions.
When such an arrangement increases the relative probability of a fis-
sion neutron to induce a fission, the keff of the core increases. As an
example, consider a bare reactor core with void BC, i.e., a neutron
that crosses the core’s boundaries to the outside does not return to the
core and does not contribute to the fission chain. Using our intuition
as core physicists, the spatial arrangement of fuel assemblies that pro-
vides the highest keff is the one that minimizes the neutron leakage.
This implies the positioning of as much fissile material as possible
away from the core boundaries, i.e., in its center. In this example,
human intuition works well, due to the problem’s simplicity.

An example of a random LP, representative of the first genera-
tion in the evolutionary process, is shown in Fig. 1, where the dif-
ferent locations in the core indicate the different enrichment
levels of the FAs, with central (peripheral) locations indicating
higher (lower) enrichment.

2.2 Core #1: Simplified PWR Core. The nuclear reactor
core considered in this work, a.k.a core #1, is a simplification of a
typical advanced (Gen IIIþ) PWR, e.g., advanced pressurized
water reactor (APWR) [21], with 17� 17 rectangular lattice con-
taining 257 fuel assemblies of three different 235U enrichment lev-
els, i.e., 3.1 w/o, 2.4 w/o, and 1.6 w/o. The axial composition of
an FA is assumed to be homogeneous and all FAs are assumed to
be fresh. Radial BC are assumed to be black absorber, whereas
the axial BC are assumed to simulate the axial reflector. The num-
ber of fuel assemblies of each type is assumed to be constant, so
the optimization is performed only on the LP and not on the num-
ber of FAs of each type. A schematic view of a typical initial core
layout is given in Fig. 2.

2.3 Reference Core #1. The reference case for core #1 is
intended to test the algorithm performances in the case of a single
objective fitness function (FF) which maximizes keff. The refer-
ence case is constructed as our educated guess for the core config-
uration that results in the highest possible keff, and is shown in
Fig. 3. The different colors indicate the different enrichment lev-
els of the FAs, with red (green) indicating highest (lowest) enrich-
ment. As discussed earlier, given void BCs, the idea is to
minimize neutron leakage by concentrating as much fissile

material as possible in the center of the core, away from its boun-
daries and in proximity of more fissile matter. This LP is charac-
terized by keff¼ 1.338932.

2.4 The Core Simulator. The core simulator used is DYN3D
[22], which is a three-dimensional core model, developed at
Helmholtz Zentrum Dresden-Russendorf (HZDR), for dynamic
and depletion calculations in light water reactor cores with quad-
ratic or hexagonal FA geometry. The two- or multigroup neutron
diffusion equation is solved by nodal expansion methods. A
thermal-hydraulic model (FLOCAL) of the reactor core and a fuel
rod model are implemented in DYN3D. The reactor core is mod-
eled by parallel coolant channels which can describe one or more
fuel elements. Starting from the critical state, the code allows the
simulation of the neutronic and thermal-hydraulic core response
to reactivity changes caused by control rod movements and/or
changes of the coolant core inlet conditions. Cross section libra-
ries generated by different lattice codes for different reactor types
are linked with DYN3D. In this work, the code is used only for
static neutronic (i.e., eigenvalue) calculations.

This core is a simplification of a typical APWR with 17� 17
rectangular lattice containing 257 FAs of three different 235U

Fig. 1 A random LP representative of some first generation of
an evolutionary process

Fig. 2 A schematic layout of core #1 fuel assemblies typical
initial LP. Fuel type 1/2/3 represent 3.1/2.4/1.6 w/o 235U enrich-
ment, respectively.

Fig. 3 A rough estimation (pre-GA) for the highest keff core LP
for core #1 (Sec. 2.3). The different locations in the core indicate
the different enrichment levels of the FAs, with central
(peripheral) locations indicating higher (lower) enrichment.
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enrichment levels, 3.1 w/o, 2.4 w/o, and 1.6 w/o. The axial com-
position of an FA is assumed to be homogeneous and all FAs are
assumed to be fresh. Axial BCs are assumed to simulate the axial
reflector whereas the radial BCs are either void or reflective. The
number of FAs of each type is assumed to be constant, so the opti-
mization is performed only on the LP and not on the number of
FAs of each type. No symmetry constrains are enforced on the
LPs and the thermal-hydraulic feedback calculations of DYN3D
are turned off (purely neutronic calculations).

The FA level calculations for the generation of few-group cross
section data sets were performed by HZDR with the commercial lat-
tice code HELIOS 1.9 [23], which is a neutron and gamma transport
and depletion code developed by Studsvik Scandpower, Kjeller, Nor-
way. The cross section libraries employed by HELIOS are based on
ENDF/B-VI evaluated data files. The full core nodal diffusion calcu-
lations employed cross sections collapsed into two energy groups
with assembly discontinuity factors (ADFs) set to unity.

2.5 GAs. The GA is a search tool, adapted for optimization
problems over huge search spaces, such as the one we are con-
cerned with, that are extremely hard or impossible to search in
more direct ways. The GA is based on a concept of the Darwinian
evolution—survival of the fittest. The concept that underlies the
basic working method of the GA consists of taking a group of sol-
utions (a population of individuals), which covers a portion of the
search space, and performing on it a process of “evolution,” thus
moving the group through the search space in search of optimal
solutions [3,4].

3 Algorithm

The GA developed in this study is based on a standard GA with
the required modifications. The essentials of the basic GA are
summarized in Algorithm 1 and illustrated in Fig. 4.

Algorithm 1 basic GA
1: procedure GA
2: Generation zero: gen¼ 0
3: Create an initial random population pop of size N
4: Calculate its variance popVar
5: Calculate fitness for every individual
6: while popVar> threshold AND gen<maxGen do
7: Store the best individual for later reinsertion
8: Select N=2 pairs of individuals for crossover
9: Crossover chosen pairs to generate N offspring

10: Randomly mutate a fraction of the population
11: Reinsert previous generation’s best individual
12: Store new population as newPop
13: gen¼ genþ 1
14: Calculate the newPop variance popVar
15: Calculate fitness for every individual
16: end while
17: end procedure

3.1 Representation. A solution in the GA is an LP of the
core, i.e., a spatial arrangement of the FAs in the core. Some solu-
tions are better for the purposes of the optimization, and some are
worse. A good solution in GA is defined by a high FF value,
which in this study is based on keff values of the LP, as subse-
quently explained. In this study, a restriction is imposed on the
allowed solution LPs, i.e., they are required to maintain the origi-
nal fuel bank in the initially given LP. That is, all solutions must
be permutations of one original given LP.

3.2 The Core Vector. In this study, the building blocks of
the LPs, the FAs, are vertical rods. In the first stage of the algo-
rithm, the changes from LP to LP are radial only. There is no ver-
tical difference in between LPs with respect to the calculations in
the DYN3D simulator. Hence, an LP, and subsequently the entire
core, can be represented by an upper view of itself. The core’s

upper view roughly takes the shape of a rectangular two-
dimensional matrix with rounded corners, according to the core
structure and geometry. Essentially, it is an array of core cells and
can be represented as such, where each of the cells contains differ-
ent FA types. Hence, the simplest representation of an LP can be
an array of cells each containing a different FA type.

For reasons of computational convenience, the LP is repre-
sented first by a core vector. The core vector is of length nI� nJ,
where nI and nJ are the number of rows and columns in the core
matrix, respectively. The cells in the core vector correspond to the
core’s cells: The first vector cell represents the top left core cell,
the second one to the cell on its right and so forth from left to
right, top to bottom. The core vector’s entries are integer numbers
from zero to the number of fuel types (n). Each number represents
the corresponding fuel type, with the exception of zero. Zero cells
are fixed in location and are merely structural aids. A visualization
of the core vector for core #1 (Sec. 2.2) is shown in Fig. 5.

3.3 The Chromosome. The solutions in the GA, i.e., the indi-
viduals of the population, are represented by chromosomes. The
chromosomes can, but do not need to, resemble the solutions they
represent. A chromosome only needs to supply the information
needed to construct its corresponding solution. In order to repre-
sent the LPs, the core vector described in Sec. 3.2 can be used.
However, since all solutions are spatial permutations of an initial

Fig. 4 Algorithm flow chart
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core structure (hence the number of FAs of each type is constant),
the core vector data structure is found to be unfit to handle this
restriction.

In order to preserve the original number of FAs of each type,
our chromosome is defined in a way that inherently does so. Let nf

designate the number of FAs in the core; hence, the chromosome
is an nf long vector. It is logically divided into n parts, where n is
the number of fuel types in the core. Each part is as long as the
number of FAs of that type. The lengths of the vector parts are
constant throughout the evolution and are determined by the user
via an input initial LP.

All LPs must adhere to the original fuel inventory and thus are
permutations of the original LP. For this purpose, a chromosome
data structure was designed that maintains the fuel inventory: The
chromosome is a permutation of the indices of the core vector
(without zeros). The location of a core index in the chromosome
determines what fuel type it holds. The core indices in the first
part of the chromosome contain the first fuel type, the ones in the
second part contain fuel of type two, and so on. This way the fuel
inventory remains unchanged.

3.4 Initialization. In order to begin the evolutionary process,
an initial population of solutions is needed. This initial population
is created randomly in order not to affect the search with uninten-
tional bias. As mentioned in Secs. 3.2 and 3.3, the solutions
are permutations of the original LP input, and the chromosomes
corresponding to those are permutations of the nf core cells. To
create the initial population, random permutations of the sequence
[1… l] are thereby created, where l is chromosome length. The
population’s size, which is the number of permutations generated
to create the population, is a predetermined (constant throughout
the evolution) variable of the algorithm.

3.5 Termination Criteria. The GA, being an iterative sto-
chastic processes, requires termination criteria, which specify the
conditions in which the search should be terminated. A natural ter-
mination point is when the search is no longer making any tangi-
ble progress toward better solutions. This happens either when the
population is mostly converged to one solution, good or other-
wise, or when, for whatever reason, it wanders through the search
space without converging.

When the population converges, most of its individuals are very
similar to one another and its variance is very low. When the pop-
ulation’s variance is low, there is not much chance for genetically
different solutions to be generated since there is no genetic diver-
sity from which that difference might emerge. In other words,
searches that reach low variance populations are futile since their
stochastic journeys have no means of escaping the search space
regions in which they are stuck.

The population’s variance is calculated using a function that
estimates how different the chromosomes in the population are
from one another. It counts chromosomal differences throughout

the population, i.e., for every chromosome in the population it
counts the number of differences from subsequent chromosomes.

Example: chromosome 1 (c1) differs from chromosome 2 (c2)
by 51 genes, so the temporary count is 51. c1 differs from c3 by 76
genes so 76 is added to the count and so forth until the last chro-
mosome in the population. Then the same process is carried out
for c2 and so on to the last chromosome. Then the sum of differen-
ces is normalized by dividing it with the number of genes
compared

population variance ¼ number of differences

number of genes compared

Ideally, the search should end upon finding an optimal solution to
the problem at hand. However, being a stochastic process, not
every evolutionary search ends with convergence to an optimal
solution. In order to terminate unsuccessful searches that do not
converge, an additional, synthetic, stopping criterion is added.
Thus, the GA is also terminated if the population does not con-
verge to a solution. This is done by limiting the number of genera-
tions. That is, the algorithm halts if the population’s variance
drops below a predetermined threshold, or after a specified num-
ber of generations if the variance threshold has not been reached.

3.6 The FF. The FF is a crucial part of the GA, and its defini-
tion has an immense impact on the performance of the algorithm.
An FF whose definition is not well suited for the problem does not
steer the search in fertile directions while an algorithm sporting a
well-defined FF is more likely to result in a successful search. In
the code, different FFs are defined and their effect on the algo-
rithm’s success is studied. All of the FFs rely on extracting core
values from the output file of the core simulation code DYN3D
(Sec. 2.4). The different FFs studied are hereby introduced.

In order to test the algorithm, single objective FFs are used,
with a simple objective for which there is an estimated optimal
solution. Thus, the proximity to a successful and well-functioning
algorithm can be assessed. The objective set for the algorithm is
the maximization of keff

_It is, as requested, a simple objective that
allows determining the effectiveness of the code in finding good
LPs. As explained in Sec. 2.3, an intuitive guess for the optimized
LP has been constructed, which is shown in Fig. 3.

The first form of the FF defined is the simplest form possible—
the keff value itself, so

FF ¼ keff (1)

This form has the advantage of being an objective parameter value
of the LP. It is not relative to the current population. But, there are
problems with this simple form. If the keff values of the population
are too close to each other, the FF does not have enough pressure
to pull the search toward good LPs, when using the FP selection
method.

The second FF definition takes the form of

FF ¼ 1

max keffð Þ � keff þ FFparameter
(2)

where FFparameter is used to regulate the scale of FF. Higher
FFparameter values result in weaker dominance of the best
chromosomes.

The last purely keff based FF replaces max(keff) in the former
FF (Eq. (2)) with a constant that represents an estimated upper
limit of the keff value. This keeps the FF values relative to the con-
stant keff limit instead of the population dependent max(keff), thus
solving the objectivity and dominance problems of the two former
FF definitions. It minimizes the FF’s relative relation to the cur-
rent population and gives a more objective value for FF. In this
study, the constant value of 1.5 is used, so the FF takes the form
of

Fig. 5 The core vector data structure
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FF ¼ 1

1:5� keff þ FFparameter
(3)

3.7 Elitism. In the process of generating the next population,
the LPs of the current one are not safe from changes, be it good
changes or otherwise. The process of crossover essentially
destroys the parent solutions to create the offspring, which are not
automatically better. So the best solutions of the population are
sure to disappear from the next ones unless actively preserved. In
order to protect them, the elitism strategy is introduced to the
algorithm.

With the elitism strategy, the algorithm finds and stores the
best chromosome in the population for later re-insertion into
the new population. The best chromosome is not removed from
the population; it still takes part in the selection, crossover, and
mutation and is most likely to parent offspring that might
improve on it. Even if they do not, though, with the elitist algo-
rithm its genetic data is still preserved and passed on the next
generation.

4 Genetic Operators

4.1 Selection. In the selection process, pairs of chromosomes
are chosen for crossover. The chromosomes are selected accord-
ing to their fitness values (Sec. 3.6). The chromosomes with the
better fitness values are more likely to be selected as parents.
Every chromosome receives a selection probability, which deter-
mines its probability to be chosen as a parent in the selection pro-
cess. The selection probability can be calculated in many varied
ways. In this work, it is calculated either by the FP method or by
our modification of the LR method.

4.1.1 Selection Probability. When using the FP method, a
chromosome’s selection probability is calculated using the for-
mula PðcÞ ¼ FFðcÞ=sumðFFÞ, where c designates the chromo-
some. The consequence of this probability equation is that each
chromosome gets a selection probability proportional to its FF
value relative to the current population. The weakness in this
method lies in the selection pressure it causes. Since the selection
probability the FP selection method gives to different solutions is
proportional to their respective FFs, the selection pressure is also
dependent upon the relative differences between those FFs; big
differences cause complete convergence of the population. If the
high FF solution is not necessarily the best solutions possible but
only better relative to the current population, this convergence is
thus premature. This effect results from the fact that solutions that
have very high FF values, relative to the current population, are
much more likely to be selected as parents for the next generation
and thus take over the gene pool and cause convergence, while
“weaker” solutions are not selected at all and disappear from sub-
sequent generations. On the other hand, differences that are too
small do not impress upon the population enough selection pres-
sure for a progression in any direction and result in search diver-
gence. That is, in a population comprised of solutions of very
similar FF, as is usually the case in the first generation of the evo-
lution, the better (albeit slightly) ones do not receive any substan-
tial selective advantage and are given a selection probability very
close to others’, a situation that renders the evolutionary process
powerless to make any progress.

A possible solution to this problem is assigning selection proba-
bilities more equally, independent of the fitness values them-
selves. One way of implementing this is the LR method, in which
the chromosomes are ranked according to their relative FFs and
given a selection probability based on their relative rank, rather
than their FF values. This ranking procedure detaches the selec-
tion pressure from the exact value of the FFs and the differences
between them. On the one hand, this allows the algorithm suffi-
cient driving force toward the better solutions, in the case of very
little difference in the FFs. On the other, it relieves the selection

pressure off the leading chromosome in the case of great FF dif-
ferences, allowing other chromosomes participation in the evolu-
tion and preventing premature convergence.

The implementation of the LR method in this study consists of
ranking the chromosomes according to their FF values and giving
each a selection probability linearly, according to its relative rank.
The selection probability for every chromosome c is calculated
using a parameter, expVal, that represents the expected number of
copies of c in the selection table. The expected number expVal is
calculated using the following formula:

expVal cð Þ ¼ 2� mþ 2 m� 1ð Þ rank� 1ð Þ
groupSize� 1

(4)

where m is the maximum expected amount of copies for the
best individual, and rank is the chromosome’s relative rank in
the group. The chromosome’s selection probability is then PðcÞ
¼ expValðcÞ=groupSize. The variable m is predetermined and
has a value within the range of 1 � m � 2. Higher values of m
result in greater selection pressure to the best solution, and vice
versa. For example, when m¼ 1, the expected amount of copies
for each chromosome in the group is 1, so they all receive the
same probability to be selected. When m¼ 2, the best chromo-
some in the group gets a “double” probability to be selected,
i.e., its selection probability is twice the probability of the mid-
dle ranked chromosome; and the worst chromosome, ranked 1,
has zero probability to be selected. So the probability of a chro-
mosome to be selected is proportional to the expected number
of its copies in the selection table, which with LR is propor-
tional to its relative rank in the population. Note that the equa-
tion for expVal is linear. It is maximized when rank¼ groupSize
and minimized when rank¼ 1, and equals m and 2�m for those
cases, respectively.

4.1.2 Selection Methods. The selection methods chosen for
this work are either the classic RW method or the tournament
method. In the RW method, the chromosomes’ selection probabil-
ities are cumulatively summed up (up to 1, since they are proba-
bilities) and a random number r between 0 and 1 is chosen,
through which a chromosome for the selection table is selected.
The cumulative sums are the “pockets” of the RW; the larger the
probability the larger the “pocket”; and the chromosome of the
first pocket larger than the randomly manufactured r is chosen.

Another method is the tournament, in which the selection pres-
sure can be adjusted more easily, allowing for a higher degree of
control over the algorithm’s behavior. High selection pressure
leads to preconvergence of the population, while low selection
pressure does not result in any convergence to an optimal solution.
In the tournament method, “tournaments” are held—choosing ran-
dom groups of chromosomes from the population and picking,
with some probability, the best chromosome in the group to enter
the selection table. Tournament size is adjustable and is one of the
parameters that allow control over the selection pressure. Larger
tournament groups increase the pressure while smaller ones
decrease it. It is also possible to control the tournament size
through the evolution, allowing for another measure of control.
Inside a tournament group, a “winner” can be determined in one
of two ways: either by choosing the best chromosome or by
choosing the RW method. If the RW method is chosen, the chro-
mosome’s probability to be chosen is calculated either by FP or
LR, as described above.

4.2 Crossover. The crossover is the genetic operator respon-
sible for the creation of new solutions out of the selected parent
solutions. It mixes the genetic data of said parents, thus generating
new solutions. It does so by swapping a segment of genes in
between the chromosomes of two solutions. The segment’s geom-
etry has never before (to the best of our knowledge) been used as
a variable of the algorithm, even though it may have significant
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impact due to the geometric nature of the problem. Instead, cross-
over operators used thus far for the in-core fuel management prob-
lem have been standard “off the shelf” operators, which do not
account for geometric effects.

The crossover operator used in this study is of geometrical
nature and consists of a geometric crossover mechanism. This
mechanism was developed to manipulate the genetic data given
by the chromosome, in a way that allows control over the swapped
core segment’s shape (note that the genes in the chromosome are
not identical to the core cells, but are a part of the core’s mathe-
matical representation. Hence, control over the geometry of the
core segment swapped requires some thought as to how to control
it through the chromosome, which, as opposed to the core, can be
directly manipulated by the code). Using this geometric crossover
mechanism, the segment’s shape is controlled. It is chosen out of
the following options:

(1) Chromosome consecutive segment—The core’s indices
contained in the chromosome between two randomly cho-
sen cut points. Since the order of the cells in the chromo-
some is not consistent with the locations in the core, it is a
collection of randomly placed cells in the core.

(2) Chromosome consecutive segment with size control—Same,
but allows for control over the segment’s size. That is, the
number of cells being swapped is also under control. The seg-
ment size is determined by the following linear formula,
which defines seg_size as a linear function of generation num-
ber, between the maximum and minimum sizes permitted

seg size¼ floor
g� crossGenð Þ � minSeg�maxRecð Þ

maxGens� crossGen

�

þmaxRec

�
(5)

where minSeg and maxRec are the minimum and maxi-
mum segment sizes, respectively, and are determined as a
parameter of the algorithm, crossGen is the generation in
which the segment size starts to be limited, g is the current
generation number, and maxGens is the maximum number
of generations in the evolution process.

(3) Core vector consecutive segment—The segment of core’s
indices between two randomly chosen ones. This means
swapping consecutive cells in the core; two random cells in
the core are chosen and the segment swapped consists of all
the consecutive cells between them.

(4) Rectangle of core neighbors—The rectangle of core indices
defined by two randomly chosen indices.

(5) Square of core neighbors with size control not dependent on
decrease starting generation—This is a correction for previ-
ous options, in which the starting generation of the segment
size decrease has an influence over the rate of decrease. In
order to change that and create a segment size formula that
looks the same for different starting generations, i.e., the seg-
ment size decreases at the same rate without starting genera-
tion impact, we introduce the next formula. It depends not
on the starting generation but on the difference g� crossGen

recSide¼floor maxRec�IþJ

2
�

�

crossDecRate

crossDecRateþgenDepend g�crossGenð Þ

�
(6)

where maxRec is the maximum portion of the core diame-
ter size that the segment square side can reach, genDepend
is a boolean parameter that determines if the segment’s
maximum size decreases over the generations or remains
constant, and crossDecRate is a parameter that influences
the decrease rate. The larger crossDecRate, the slower the
decrease.

Option 1 is the standard crossover with the standard crossover
segment used, while options 2–5 are novel and allow for different
measures of control over the segment shape. Some of the options
also allow the segment size to be controlled; decreased as a func-
tion of generation. The large segment swaps at beginning of evo-
lution allows the weakly optimized chromosomes of the early
populations to exchange large segments of genetic information, in
search of the best solution. It also allows the gradual decrease of
segment size to facilitate finer genetic alterations in the good solu-
tions found.

4.2.1 Fixing the Chromosome After Crossover. For every GA
whose solutions are of permutational nature, a simple segment
swapping crossover is likely to result in invalid chromosomes that
are no longer permutations.

As mentioned in Sec. 3.1, the genes in the chromosomes are
indices in the core and chromosomes are permutations of those
indices. So any chromosomal recurrences must be fixed. That is,
there cannot be a core cell denominator that appears both in the
first and second parts of the chromosome, since its counterpart in
the respective LP should then need to contain two different FAs at
the same time.

The correction is done by a separate function which, outside the
chosen segment, swaps recurring indices between the two chro-
mosomes. A demonstration of the operation of the crossover oper-
ator and the fixing process can be seen in Figs. 6–9.

4.3 Mutation. The evolutionary search is limited to the
regions it is able to reach with the population’s existing genetic
pool. If a way out of these regions is not accessible, the algo-
rithm’s reach is limited to the local optima of those regions only.
When the search is stuck on such local optima, it is said to be stag-
nated. The mutation operator is one measure used to avoid this
stagnation. It does so by changing the chromosomes and introduc-
ing new genetic data into the population, thus reaching untapped
regions of the search space.

Mutation on an individual is swapping two random genes
within the chromosome. Since in this study the location of the
genes in the chromosome is the trait that carries genetic signifi-
cance, this action introduces new information into the genetic
pool. For example, if none of the chromosomes contains the gene
“a” in location “A” then due to the nature of the crossover opera-
tor none of the offspring will.

Fig. 6 Top—the original cores and the mapping of the chromo-
some to the core. Bottom—the corresponding chromosomes,
with each fuel type, e. g., I, II, III, represented by different shade.
The cell randomly chosen for crossover is marked with bold
border in the upper panel. The randomly chosen neighborhood
size is 3 3 3. Segment parts that are not in the core are omitted.
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The basic mutation operator mutates a randomly chosen portion
of the population. The portion size is normally distributed around
an adjustable predetermined value that is an algorithm parameter,
namely mutationRate. This parameter has a great effect on the
search’s stagnation. For example, if the mutation rate is increased
dramatically (to a value greater than 1), most of the individuals in
the population undergo mutation several times, thus creating a
shuffling effect that allows the population to escape stagnation.
Too high a mutation rate shuffles the genetic data in the popula-
tion too much and distances the search from good solutions thus
found; it does not allow the population to converge but keeps
shuffling it. Alternatively, a mutation rate too low does not allow
the population to escape stagnation and results in the search get-
ting stuck on local optima.

There are three optional alterations added to the basic mutation.
They are additional features of the algorithm’s mutation operator
and can be either switched on or off as pleased. First is the peak
mutation in which the mutation rate is peaked every constant
number of generations in order to shuffle the genetic pool of the
population. This is done by increasing the mutation rate for one
generation and then dropping it back to its original value.

The second variation of the mutation operator is the variance
mutation. It adapts the mutation rate according to the population’s
variance. Low variance of the population too early in the evolu-
tion suggests premature convergence to local optima, while high
variance indicates that the population has a difficulty in conver-
gence. The variance mutation attempts to evade those problems
by increasing the mutation rate when variance is too low and
decreasing it when too high. However, a low population variance
is not a globally harmful phenomenon. It is expected that the pop-
ulation should converge and display low variance at some point of
the evolution, when it gets to an optimal solution. So, after a large
enough number of generations the mutation rate tempering is
stopped and the population is allowed to converge. This genera-
tion number is also a parameter of the algorithm.

The last variation is the decreasing mutation rate. The size of
the population portion being mutated is decreased from a prede-
termined generation onward throughout the evolution. The idea
behind this approach is letting the population wander through the
search space in the beginning of the evolution and allowing it to
converge as it progresses. The formula used to decrease the muta-
tion rate depends on the difference between the current genera-
tion, g, and the generation in which we start to decrease,
mutationGen. The pace of decrease is controlled by the mutDe-
cRate parameter; high parameter values lead to a slower decrease
pace

mutationRate ¼ mutationRate � mutDecRate

mutDecRateþ g�mutationGen

(7)

5 Results and Discussion

Out of the many core parameters to be optimized, in the first
stage of this project it was decided to optimize a single parameter
of the reactor core—keff. The reason for choosing this objective is
its relative simplicity, which allows the application of physical
intuition based on reactor core physics. Because this objective is a
simple one, it is possible to predict its expected optimal LP and
see if the GA developed can produce an LP close to it, testing the
algorithm’s performance.

Fig. 7 The cores after segments swap. Notice that the number
of FAs of each type is not preserved.

Fig. 8 Cells outside the selected segment are chosen to switch
fuel type, in order to restore the original fuel inventory

Fig. 9 The chosen cells are repositioned into the appropriate
fuel type, resulting in two “legal” offspring cores

Fig. 10 The LP with the highest keff value produced by the GA
algorithm with void BCs
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5.1 Largest keff LP. In Sec. 2.1 the physical intuitive reason-
ing behind the construction of the estimated optimal LP for the
single objective keff optimization problem is explained. It is pre-
sented in Fig. 3 and sports a keff value of 1.338932. The LP with
the highest keff value produced by the GA algorithm is of
keff¼ 1.339627 and is shown in Fig. 10. From the comparison
between the two LPs, it is evident that the algorithm performs as
required and produces an LP that outperforms the estimated one.

5.2 Selection—Maximum expVal Versus Tournament
Size. When using the FP or LR selection methods with RW
instead of tournament, good results appear around the value of
expVal¼ 1.8, as can be seen in the graph in Fig. 11. The graph
represents one set of comparable optimizations. Two such exam-
ples of relatively good LPs generated from optimizations with dif-
ferent parameter sets but with expVal¼ 1.8 can be seen in
Figs. 12(a) and 12(b).

When using tournament, there seems to be a trade-off relation-
ship between the maximum expVal parameter and the tournament
size parameter. Higher maximum expVal values require bigger
tournament groups to give good results, and vice versa. This phe-
nomenon is probably due to the effect both parameters have on
the convergence pressure—the higher the maximum expVal
value, and the smaller the tournament, the higher the pressure.
This correlation between the parameter and the convergence pres-
sure is demonstrated very clearly for the case of the maximum
expVal parameter in Fig. 13.

The best results with tournament seem to appear around the val-
ues of 1.57< expVal< 1.65 with tournament size of about 1=30
of the population size. These results can be observed in Fig. 14. It
is surprising to see that without tempering with other parameters,
the RW produces better results, as can be seen from comparing
the LPs in Figs. 12(a) and 12(b), possessing values of
keff¼ 1.335648 and keff¼ 1.335812, respectively, to the LP of
Fig. 12(c) which has a keff value of 1.335222 and was produced

Fig. 11 keff as a function of maximum expVal with RW

Fig. 12 LPs generated from optimizations with different parameter sets, all with
maximum expVal 5 1.8, alongside the evolution of their (lighter shades represent
the maximum and minimum keff of each generation, whereas dark black represents
the mean) and population variance
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from an optimization with the parameter values of expVal¼ 1.65
and tournament size¼ 15.

5.3 Crossover Segment Size. Adding a geometric crossover
that limits the segment’s size from some generation on proved to
be the most influential change at this stage of the study. The
results improve dramatically when using the limited segment
crossover. Below the value of crossGen¼ 50, populations

converge too quickly to bad results. LPs with good keff values start
appearing above crossGen¼ 50 and seem to peak in amount
between the values of 200 and 350, as shown in Fig. 15.

5.4 Population Size. Different population sizes have been
tested and show that bigger population results are better when the
parameters of the algorithm are good. When the parameters are
not good, a bigger population causes excessive variance that
results in a smaller chance to converge to a good result.

5.5 Changing BCs. All results so far presented originate
from optimization with void BCs. As explained, in this case the
best LP tend to concentrate the high enrichment FAs in center of
the core and the less enriched ones around in a concentric circular
pattern of descending enrichment, as shown in Fig. 10.

What happens when the BCs are changed while keeping the
GA parameters constants? This is a purely physical effect. An
example of a very simple problem, which is not so intuitive, can
be considered by altering the problem described in Sec. 2.1 to
completely reflective BCs, i.e., no neutron escapes the core. In
that case, our intuition as core physicists often fails, as the LP of
the highest keff core is an asymmetric one. The solution for this
simple problem is shown in Fig. 16.

6 Summary and Conclusions

A complete calculation scheme was developed and studied for
the application of GAs to the in-core fuel management single
objective keff optimization problem. Very good results are dis-
played by the algorithm for the simple keff-based FF. Extensive
research in the vast parameter space reveals a trade-off between
maximum expVal and tournament size, probably because both
affect the convergence pressure. For no tournament there seems to
be a peak of results around max expVal¼ 1.8, and with tourna-
ment around 1.57<max expVal< 1.65 and tournament size¼
1=30 of the population size, depending on other parameters. Fur-
ther research shows better results for LR with tournament.

Some different crossover operators were checked. The best
applied a geometric crossover that decreases the limit size of the
crossed segment after a predetermined generation number (cross-
Gen). The results seem to be better for crossGen> 50, and the
best ones appear around 200< crossGen< 350.

Finally, very good results are obtained for changing the BCs of
the core, without modifications to the code. This means that the
FF was enough to inform the code of the changes to the core’s
physics and also that the code is not effected by hidden bias.

To conclude the first stage of the study, the evolutionary algo-
rithm seems very much suited for solving the simplified single
objective nuclear core loading problem presented. The results

Fig. 13 The variance of the population as a function of genera-
tion number for different maximum expVal values (m) with RW
selection

Fig. 14 keff as a function of tournament size for different maxi-
mum expVal values

Fig. 15 keff versus recGen. recGen values are 1, 30, 50, 70, 100,
and 200.

Fig. 16 The LP with the highest keff value produced by the GA
algorithm with reflective BCs
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obtained after much research of the parameter search space
exceed the ones predicted. Moreover, the code seems to handle
changes in the physics of the problem without difficulty and with-
out modification, and produce the expected results. At the end of
this stage, a well-functioning EA adapted to the simple single
objective is obtained and ready for modification to add the mini-
mization of the PPF value of the LP as an objective of the
problem.

Nomenclature

ADF ¼ assembly discontinuity factors
APWR ¼ advanced pressurized water reactor

BC ¼ boundary conditions
FA ¼ fuel assembly
FF ¼ fitness function
FP ¼ fitness proportionate

GA ¼ genetic algorithm
HZDR ¼ Helmholtz Zentrum Dresden-Russendorf

LP ¼ loading pattern
LR ¼ linear ranking
NP ¼ nondeterministic polynomial-time (in computational

complexity theory)
NPP ¼ nuclear power plant
PPF ¼ power peaking factor

PWR ¼ pressurized water reactor
RW ¼ roulette wheel
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