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a b s t r a c t

The spread of a contagious disease is often accompanied by a rise in awareness of those in the social

vicinity of infected individuals, and a subsequent change in behaviour. Such reactions can manifest

themselves in lower susceptibility as people try to prevent themselves from catching the disease, but

also in lower infectivity because of self-imposed quarantine or better hygiene, shorter durations of

infectiousness or longer immunity. We here focus on the scenario of an endemic disease of which

members of the population can be either aware or unaware, and consider a broad set of possible

reactions. We quantify the impact on the endemicity of a disease in a well-mixed population under the

variation of different disease parameters as a consequence of growing awareness in the population.

Applying a pair-closure scheme allows us to analyse the effect of local correlations if aware individuals

tend to occur near infected cases, and to link this to the amount of overlap between the networks

underlying the spread of awareness and disease, respectively. Lastly, we study the consequences on the

dynamics when the pathogen and awareness spread at different velocities.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

The spread of a contagious disease can trigger behavioural
responses of people trying to minimise the effect of the disease
onto themselves and their peers, and to prevent themselves and
others from contracting the disease in the first place (Hays, 2006).
Depending on the best behaviour associated with a given disease,
heightened levels of awareness give rise to the usage of face
masks (Lau et al., 2005; Kristiansen et al., 2007), practise of better
hygiene (Jones and Salathé, 2009; Rubin et al., 2009), application
of preventive medicine (Laver et al., 2001), vaccination (Brewer
et al., 2007), voluntary quarantine (Tracy et al., 2009), avoidance
of congregated places (Jones and Salathé, 2009), practise of safe
sex (Ahituv et al., 1996), etc. These actions can change the
transmission patterns of the disease in altering the rates of spread
as well as the durations of infectivity and immunity. The exact
impact they can have on the disease dynamics, however, is
difficult to quantify and often subject to speculation. Where
conclusive observations are missing, mathematical modelling is
used to test hypotheses and to identify crucial parameters in the
interaction between a spreading disease and an associated
behavioural response in the population (Ferguson, 2007).

The behavioural response to a disease carries elements of a
contagious process itself. For people to react in some way, they do
ll rights reserved.

z.gilad@gmail.com (E. Gilad),
not necessarily need to have witnessed the disease first hand.
Often, they have heard of it through the media or health
authorities. These, however, usually focus on high-profile diseases
and report broad statistics which often provide little information
to people trying to assess their individual costs and benefits of
behavioural changes. Instead, awareness of the local prevalence of
a disease not covered by media or local health authorities is more
likely to be raised to by acts of informal information spread
(e.g., Tai and Sun, 2007), i.e. by hearing about someone having
fallen ill, notes on a nursery door or other forms of local
dissemination of awareness. As the information about the
presence of a disease spreads in the population, people adapt
their behaviour as a result of their awareness of the disease
(e.g., Stoneburner and Low-Beer, 2004).

The spread of rumours or other tokens of information in a
human population has previously been compared to the spread of
a contagious disease as an entity which is passed on from person
to person (Goffman and Newill, 1964). Both in this context and in
the context of spreading diseases, the importance of social
network structure has received growing attention in recent years
(Keeling and Eames, 2005). In our particular context, we are faced
with two processes which spread over two, not necessarily
overlapping networks and interact through the behavioural
response of people as they become aware of the presence of a
disease. This is not entirely dissimilar from the interaction
between two diseases which has been studied, for example, by
Vasco et al. (2007).

We recently presented a model for the spread of awareness in
response to an epidemic outbreak and analysed the effect this can
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have on the outbreak (Funk et al., 2009). Here, we expand on that
idea to study a simplified model of the interaction between local
behavioural response and endemic disease. We map the model we
introduced previously to a model which knows just two states of
awareness—aware and unaware. This allows us to apply a
systematic treatment to distinguish between the impact of
spreading awareness on the initial phase of an outbreak of a
contagious disease and the long-term impacts on the establish-
ment of the disease, and to ask what happens under different
types of behavioural change.

In the following, we introduce the model and study it in a well-
mixed population, before considering the impact of local correla-
tions using a pair approximation. All methods employed in this
work are deterministic in nature, which makes them a good
approximation only if infection is abundant enough to make
stochastic extinction very unlikely. Therefore, we focus here on
endemic disease which, once established, is present in a
substantial fraction of the population. To assess the remaining
effect of stochasticity, we compare the results with an equivalent
stochastic model on a network.
2. The model

We divide our model population into two compartments:
aware (labelled +) and unaware (�). Awareness spreads within
the population analogously to an SIS (Susceptible-Infected-
Susceptible) model, in that awareness is spread from the aware
to the unaware part of the population at rate a and lost again or
forgotten with rate l.

We overlay the model for the spread of awareness with a
standard SIRS (Susceptible-Infected-Recovered-Susceptible) mod-
el for endemic disease (see, e.g., Anderson and May, 1991), with
associated rates of infection b, recovery g and loss of immunity d.
In total, we therefore end up with six distinct compartments:
S�
 Susceptible unaware

I�
 Infected unaware

R�
 Recovered unaware

S+
 Susceptible aware

I+
 Infected aware

R+
 Recovered aware
According to whether an individual is aware or unaware, we
examine a variety of consequences on behaviour and, conse-
quently, the disease progression with respect to that individual.
In addition to reduced susceptibility as a consequence of
protective behaviour adopted in a state of greater alert, we
study the impact of reduced infectiousness of infected indivi-
duals as they become aware of carrying the disease and
voluntarily reduce their number of contacts or take medication
which reduces their infectiveness. If we denote the infection rate
in an unaware population with b, the reduction in infectivity by
a factor 0osI o1 and the reduction in susceptibility by a factor
0osSo1, we end up with four different infection rates
depending on the awareness of the susceptible and infected
individuals in contact:
b
 Infection rate from unaware infected to unaware
susceptible
sSb
 Infection rate from unaware infected to aware
susceptible
sIb
 Infection rate from aware infected to unaware
susceptible
sSsIb
 Infection rate from aware infected to aware susceptible
Generally, the combined effect of reduced susceptibility and
infectiousness on the infection rate from aware infected to
aware susceptibles does not need to be multiplicative, but
could be a more general sSI. Here, however, for the purpose
of being able to treat the two effects of reduced susceptibility
and reduced infectiousness separately, we decided to regard
them as independent effects on the infection rate, so that
sSI ¼ sSsI .

The model, in principle, also covers the scenario in which
infectivity or susceptibility is increased by awareness (i.e., sI 41
or sS41). Although we do not expect this to be a common
scenario, and it is beyond the scope of this paper, it is more than a
theoretical possibility and could be encountered, for instance, in
risk-seeking behaviour, such as deliberate contacts between
infected with uninfected individuals in communities where HIV
is highly prevalent (Berg, 2009), or in the increased movement of
livestock in anticipation of a ban on movement, in the presence of
a zoonosis.

In addition to modifying the infection rates, we study the case
where awareness changes the duration of infection as people take
medication or take other measures to recover more quickly.
Denoting the reduction in the duration of infection with e�1 leads
to the modified recovery rates:
g
 Recovery rate of unaware infected

eg
 Recovery rate of aware infected
We also allow the duration of immunity to be multiplied by a
factor f�1 for people who are aware of the presence of the
disease, caused, for example, by continued medication or renewal
of vaccination. The resulting modified rates of loss of immunity
are:
d
 Rate immunity loss of unaware recovered
fd
 Rate of immunity loss of aware recovered
This sums up the parameters of the modified SIRS model, and the
way they change according to whether someone is aware or not.
As mentioned above, awareness has its own dynamics governed
by the following rates:
a
 Rate of awareness spread
l
 Rate of awareness loss
Lastly, the presence of awareness is coupled to the presence of the
disease by a transition of rate o at which those unaware and
infected become aware without contact to others. These are the
sources of awareness.
o
 Rate of infected becoming aware
All compartments and the transitions between them are sum-
marised in Fig. 1.
3. Mean-field analysis

Under the assumption of a well-mixed population, interactions
between the different compartments happen completely at
random, and rates of change are therefore proportional to the
total number of individuals in the different compartments.
Denoting with N+ =S+ + I+ +R+ the aware and with N� =S� + I� +R�
the unaware part of the population of constant size N=N+ +N� ,
the dynamics of the spread of awareness is described by the
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Fig. 1. Classes and transitions in the model. An arrow stands for ‘‘can turn into’’,

with filled arrow caps indicating processes subject to contacts on the disease (solid

lines) or awareness (dashed lines) networks. Open arrow caps indicate processes

that are not subject to contact.
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following ordinary differential equation (ODE):

_N þ ¼ aNþ
N�
N
�lNþ þoI�; ð1Þ

with the equation for N� following trivially from N� +N+ =N. In
the absence of infection (I� =0), the system described by Eq. (1)
has two equilibria:

Nþ ;1 ¼ 0 and Nþ ;2 ¼ ð1�l=aÞN; ð2Þ

representing situations in which awareness is absent from the
population or established in it, respectively. Analogously to
the invasion threshold in epidemic models, the stability of the
equilibria is determined by the value of the ratio Ra

0 ¼ a=l. If
Ra

0o1, the unaware equilibrium N+ ,1 is stable, whereas if Ra
041 it

becomes unstable, and the equilibrium N+ ,2 in which with a part
of the population is aware acquires stability. R0

a therefore acts as a
basic reproductive number of awareness, a familiar concept in
epidemiology (Diekmann and Heesterbeek, 2000).

Combining the model for the spread of awareness with the
model for the spread of the disease as given by the SIRS model we
end up with a system of six ODEs representing the dynamics of
the full system:

dS�
dt
¼�ðI�þsIIþ Þb

S�
N
�aðSþ þ Iþ þRþ Þ

S�
N
þlSþ þdR�;

dI�
dt
¼ þðI�þsIIþ Þb

S�
N
�aðSþ þ Iþ þRþ Þ

I�
N
þlIþ�gI��oI�;

dR�
dt
¼�aðSþ þ Iþ þRþ Þ

R�
N
þlRþ�dR�þgI�;

dSþ
dt
¼�ðI�þsIIþ ÞsSb

Sþ
N
þaðSþ þ Iþ þRþ Þ

S�
N
�lSþ þfdRþ ;

dIþ
dt
¼ þðI�þsIIþ ÞsSb

Sþ
N
þaðSþ þ Iþ þRþ Þ

I�
N
�lIþ�egIþ þoI�;

dRþ
dt
¼ þaðSþ þ Iþ þRþ Þ

R�
N
�lRþ�fdRþ þegIþ : ð3Þ

Summation over the disease states of the system to obtain
_N� ¼ _S�þ _I�þ _R� and _N þ ¼ _Sþ þ _I þ þ _Rþ recovers the dynamics
of the spread of awareness as prescribed by Eq. (1), and summing
over the information states to obtain _S ¼ _S�þ _Sþ , _I ¼ _I�þ _I þ and
_R ¼ _R�þ _Rþ recovers the equations of the classical SIRS model if
the disease rates are awareness-independent (sI ¼ sS ¼ e¼f¼ 1).
The condition for disease invasion is then fulfilled when the basic
reproductive number Rd

0 ¼ b=g exceeds 1 (e.g., Diekmann and
Heesterbeek, 2000).

In the full system described by Eqs. (3), we identify four
qualitatively different types of mean-field equilibria in which
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either everyone is susceptible and unaware, or any combination
of disease and awareness are endemic (Fig. 2a). If awareness and
disease spread completely independently, with awareness-
independent disease transition rates and o¼ 0, the equilibrium
structure is fully determined by the values of the threshold
parameters Rd

0 ¼ b=g and Ra
0 ¼ a=g which assume the role of the

epidemic thresholds for the two different processes.
When the interaction between the spreads comes into play, i.e.

when any of the disease-related parameters change with respect
to the awareness of a given susceptible-infected pair, the borders
between these four regions can change. The way such changes
depend on the interplay between the parameters will be
discussed in the following.

A special role is assumed by the process of information
generation, coupled to the parameter o. If o40, there is no
longer an equilibrium in which the disease is endemic but
awareness is not. Whenever there is any positive fraction of
infected in the population, it will also create some level of
awareness. To first order, the number of aware individuals thus
generated is (see the Appendix)

No
þ �

o
ja�lj

I�
N

ð4Þ

which is a good approximation as long as

o
a

I�
N

t
1

4
1�

1

Ra
0

� �2

: ð5Þ

If Ra
0 � 1, the contribution of sources of awareness to the aware

population is better approximated by

No
þ �N

ffiffiffiffiffiffiffiffiffiffi
o
a

I�
N

r
: ð6Þ

In the following we study the equilibrium structure of the mean-
field model under different scenarios for the impact of awareness
on the parameters of the disease dynamics.

3.1. Equilibrium structure

The trivial equilibrium of our model is one which is free of
disease and awareness, at S� =N and S+ = I� = I+ =R� =R+ =0. At that
point, the whole population is susceptible to the disease and
unaware of it. On contact with the infected part of the population,
susceptibles are infected with a rate potentially scaled with the
parameters sS and sI , depending on whether the susceptible
and infected individuals in contact are aware of the disease
or not, and, once infected, recover at a rate scaled with e if they
are aware. If o¼ 0, the stability of the disease- and awareness-
free equilibrium depends only on b=g and a=l, just as in the
decoupled case described above, and independently of sS, sI and
e. In that case, the borders of the bottom region in the left corner
of the graph discussed above remain as before and they are
determined by

Rd
0 ¼

b
g

and Ra
0 ¼

a
l
: ð7Þ

If R0
d is smaller than 1 but the awareness threshold R0

a exceeds 1,
the stable equilibrium is one where awareness is endemic but the
disease is not (S� ¼N � l=a, S+ =N�S� , I� = I+ =R+ =R� =0). If both
R0

d and R0
a are greater than 1, the dependence of the disease-

related parameters comes into play as it becomes harder for the
disease to invade the population if there is a sustained level of
awareness. This is the case for several of the possible effects of our
model, i.e. if aware individuals recover from the infection more
quickly, but also if they spread the infection less, or if aware
susceptibles are less prone to catching the disease (Fig. 2b), as we
will see in greater detail in the following.
A complete analysis of the ODE system (3) is difficult and does
not lead to transparent results. Instead, we will cover some
limiting cases to illustrate the effect which different kinds of
behavioural change as a result of awareness can have. We here
state the results of our analysis of the invasion conditions, the
derivations of which can be found in the Appendix.
3.1.1. Reduced susceptibility

If susceptibles have their susceptibility reduced by a factor sS,
while the other rates remain unaffected by awareness,
sI ¼ e¼f¼ 1, the epidemic threshold remains at 1 for Ra

0o1,
but if Ra

041 it increases to

Rd
041þ

ð1�sSÞðR
a
0�1Þ

1þsSðRa
0�1Þ

; ð8Þ

which depends only on R0
a and is independent of the relative

speeds of the two processes, and of the rate of information
generation o. If Ra

0-1, the threshold approaches 1=sS, as
everyone in the population will be aware. Eq. (8) is similar to
the result obtained by Vasco et al. (2007) in the context of the
spread of two interacting diseases.
3.1.2. Reduced infectivity

If only infected individuals have their infectivity reduced by a
factor sI , while the other rates remain unaffected by awareness,
sS ¼ e¼f¼ 1, the invasion threshold for the disease is changed
even if Ra

0o1 because now the appearance of awareness in
infected individuals at rate o changes the disease dynamics even
if awareness does not spread much. In that case, the condition for
disease invasion changes to

Rd
041þ

ð1�sIÞo
lþgþsIo

: ð9Þ

This explains why there is a gap between the epidemic threshold
and 1 for Ra

0o1 in Fig. 2b. If awareness can spread, such that
Ra

041, the invasion condition becomes

Rd
041þ

ð1�sIÞ Ra
0 1þ

o
aþg

� �
�1

� �

1þsI Ra
0 1þ

o
aþg

� �
�1

� � ; ð10Þ

which is similar to Eq. (8), but contains an additional term
reflecting the impact of the rate o at which infected can become
aware by themselves. If o¼ 0, inequalities (8) and (10) are the
same with sS and sI interchanged.

Note that a, l, b and g cannot be eliminated concurrently from
inequalities (9) and (10) by expressing them in terms of R0

d and R0
a

only. The impact of new awareness appearing in those infected is
relative to how long they stay infected (g�1) and how fast it is
spread (a).
3.1.3. Faster recovery

If only the recovery rate, or the duration of infection, depends
on the awareness of a given infectious individual, such that e41,
but all other parameters are awareness-independent, the invasion
condition changes whatever the value of Ra

0 because infected
individuals can become aware at rate o40 and have their period
of infectivity shortened, even if awareness does not spread far. If
Ra

0o1, the condition for disease invasion becomes

Rd
041þ

ðe�1Þo
lþegþo ; ð11Þ
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which, again, causes a gap between the epidemic threshold and 1
for Ra

0o1 in Fig. 2b. If Ra
041, the invasion condition is

Rd
041þ

Ra
0�1þ

o
aþgþo

Ra
0þ
ðe�1Þg
aþgþo

ðe�1Þ: ð12Þ

Again, the invasion conditions cannot be described by a simple
relation between R0

d and R0
a, but only by a more complex relation

of all parameters.

3.1.4. Longer preservation of immunity

If the duration of immunity d�1 depends on the awareness of
individuals, this changes the fraction of infected and recovered in
the endemic state, yet it does not affect the transitions between
the equilibria. This is, to some extent, an artefact of the
deterministic formulation of the model. If awareness is abundant,
and it prolongs immunity by a large amount, the number of
infected can drop so low that the deterministic approximation
used here loses its value and stochastic extinction becomes likely
enough to be relevant. However, we will not discuss this further
in this paper.

3.1.5. Endemic equilibria

While we did not find analytical expressions for the exact
levels of the endemic equilibria, they can be derived numerically,
a few examples of which are shown in Fig. 2c. Unlike with the
invasion conditions shown in Fig. 2b, which display a sharp
threshold at R0

a =1, there is a noticeable effect on the endemic
equilibrium for Ra

0o1 as R0
a approaches 1 because even if

awareness cannot spread independently, a sizable part of the
population will become aware, lowering the equilibrium density
of infected individuals.

3.2. Pair approximation

While the mean-field approximation is useful in capturing
general features of the model system, it does not contain a notion
of spatial structure in the population as it assumes random
mixing. As awareness spreads in the population in the mean-field
model, it does so only by affecting an increasing fraction of the
population which the disease encounters. This is reflected by the
interaction terms which assume the form

_I ¼ þb
1

N
ðI�þsIIþ ÞðS�þsSSþ Þ� � � � : ð13Þ

This form of interaction includes the assumption that the
probability of any one infected to encounter an aware/unaware
susceptible is proportional to the fraction of such individuals in
the population.

If one wants to take into account effects of local interaction
and the notion that awareness can be different around disease
cases from other parts of the population, the system is more
accurately described at the level of pairs. If we denote by [y]d the
number of pairs of two members of the population in given state
with a potentially infectious contact, the interaction term
becomes

_I ¼ þ b̂ð½S�I��
dþsI½S�Iþ �

dþsS½Sþ I��
dþsssI½Sþ Iþ �

dÞ� � � � ; ð14Þ

where b̂ ¼ b=kd is the per-contact default infection rate if kd is the
number of disease contacts each individual possesses in the
population, assumed here to be constant. Under the assumption
of random mixing, i.e. if all contacts occur completely at random,
we recover the well-mixed case described by the mean-field
approximation, and ½S7 I7 �

d ¼ kdS7 I7 =N. By describing the
system at the level of pairs, however, we can capture situations
where ½S7 I7 �
d is greater or smaller than in a completely random

setting, including cases where, for example, members of the
population with a potentially infectious contact in their neigh-
bourhood have a higher awareness with respect to the rest of the
population.

The build-up of correlations between states has been shown to
be relevant to the description of spreading diseases in structured
populations. In the absence of awareness the basic reproductive
number of the disease at the level of pairs is given by

Rd
0 ¼ Cd

S�I�

b
g ; ð15Þ

where

Cd
S�I�
¼

N

kd

½S�I��
d

S�I�
ð16Þ

is the correlation between unaware susceptibles and unaware
infected on disease edges, i.e. their tendency of being neighbours
on the network. This correlation can be shown to reach a quasi-
equilibrium very fast with respect to the disease dynamic,
yielding the basic reproductive number as given by the pair
approximation (Keeling, 1999)

Rd
0 ¼ 1�

2

kd

� �
b
g : ð17Þ

In addition to capturing state correlations, a description on the
level of pairs allows us to distinguish between the pathways
underlying the spread of the different processes. We thus denote
pairs on the disease network of potentially contagious contact
with [y]d, and ones on the network of spreading awareness with
[y]a, so that the interaction terms for the spread of awareness
assume the form

_Sþ ¼ . . . þ âð½S�Sþ �
aþ½S�Iþ �

aþ½S�Rþ �
aÞ . . . ; ð18Þ

where â ¼ a=ka is the per-contact rate of awareness spread if ka is
the constant number of contacts each individual possesses on the
network on which awareness spreads. Analogously to Eq. (15), we
can define a basic reproductive number of awareness at pair level

Ra
0 ¼ Ca

�þ

a
l
; ð19Þ

where

Ca
�þ ¼

N

ka

½N�Nþ �
a

N�Nþ
ð20Þ

is the correlation between aware and unaware individuals on the
network underlying the spread of awareness.

The six different states on two distinct edge types in our model
result in a total number of 42 pair equations. Deriving them by
hand is tedious to do and prone to errors. Therefore, we
implemented an automated procedure to generate the equations
from a given set of states, edge types and transitions. The
resulting system of equations can be found in its full form in the
online supporting material, while we elaborate on the exact way
we treat the overlap between the two networks in the Appendix.

Analysing the system of equations produced from the pair
approximation, we find that correlations can indeed play an
intricate role in the interaction between spreading awareness and
disease. The most pronounced difference in the dynamics of the
correlations occurs in the initial phase of growth of a disease
which breaks out in an almost completely susceptible population.
Once the system comes close to equilibrium, the correlations
converge to approximately 1, and network effects cease to play a
significant role.

We can introduce correlation measures for the local interac-
tion between disease and awareness. Concentrating, for example,
on the effect of reduced susceptibility, i.e. sSo1 while all other
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reproductive numbers of disease and awareness, respectively, as given by the pair

approximation. The value of 4% was chosen so the lines converge to R0
d =1 if R0

a =0.
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rates are awareness-independent, the local accumulation of
awareness around infected cases is captured by the correlation

Cd
Sþ I ¼

N

kd

½Sþ I��
dþ½Sþ Iþ �

d

Sþ ðI�þ Iþ Þ
; ð21Þ

which gives the tendency of aware susceptibles to be connected
to infected individuals on the disease network.

With a large degree of overlap between the two networks, the
approach to equilibrium can be different from the non-over-
lapping case. Generally, if Rd

041 and one starts with a few
infected individuals, the disease goes through a phase of
exponential increase before the equilibrium is approached. With
a large degree of overlap between the two networks, the initial
correlation between infected and aware individuals slows down
the exponential increase, and the approach to equilibrium can be
slower than what the well-mixed view predicts, even when they
converge to the same equilibrium (Fig. 3).

To assess the impact of this initial mitigation of the growth of
the disease, we tracked the number of individuals infected in a
single outbreak as predicted by the pair approximations as well as
by stochastic simulations. The results reveal an effect not
predictable by the mean-field approximation but captured by
the pair dynamics. If Ra

0o1, and the two networks do not overlap,
there is no noticeable effect of awareness on outbreak sizes, just
as in the mean-field approximation. If, however, the networks do
overlap, the pair approximation suggests that an increasing R0

d is
necessary for an outbreak to grow to a given size, the strongest
relative change occurring when Ra

0 � 1, i.e. when the spread of
awareness is nearly critical (Fig. 4). In that case, the equilibrium
number of aware individuals is approximately 0, but any
awareness which appears in the population either establishes
itself at a small number (if Ra

0\1) or subsides only slowly
(if Ra

0t1). Now, if the networks overlap strongly, awareness
appears in infected cases (at rate o) and spreads around these, so
that [SI]d pairs tend to be of type [S+ I+]d with the corresponding
reduction in transmission rate.

If Ra
0o1, the effect on the outbreak size on overlapping

networks is caused by minor outbreaks of awareness generated
around infected cases, which themselves are sources of aware-
ness. As these outbreaks are generally of small size because
Ra

0o1, different timescales between the two spreading processes
make no big difference. If, on the other hand, Ra

041, awareness is
able to spread and establish itself in the population even without
being refreshed by infected cases. Now, for the same combination
of R0

d and R0
a, the relative timescales between the two processes
determine how quickly awareness takes over large parts of the
population, and consequently how early it can have a strong
influence on the disease outbreak. Keeping R0

a constant but
increasing â, we observe an increased effect on the quenching
of the epidemic (Fig. 4).

The results presented here apply to relatively unclustered
networks. While we did extended the methods devised by Keeling
(1999) for pair approximations on clustered networks to our more
complex system, these failed to generate convincing results or
capture any of the effects we previously showed to operate when
disease and awareness interact on clustered networks (Funk et al.,
2009). In fact, we found that the sheer complexity of the system of
equations resulting from the pair approximation we derived made
it difficult to go beyond the simple observations presented here.

4. Discussion

We find the impact of spreading awareness on endemic
disease to be manifested in two different phenomena. On one
hand, it changes the invasion conditions between a disease-free
and endemic equilibrium, and can make it impossible for a
disease to establish itself in the population. This effect is well
captured by the mean-field approximation, as the situation in
endemic equilibrium is usually close to well-mixed, and the
disease is evenly distributed in the whole population rather than
local to a particular part of it. We have recently learnt that in
parallel Kiss et al. (2009) have independently formulated and
analysed a similar model with results that are in line with our
findings.

Reduced infectivity or shorter duration of infection of those
aware and infected as well as reduced susceptibility of aware
susceptibles, or a combination of the three, all make it more
difficult for the disease to establish itself in the population. If
infected individuals act as sources of awareness, reduced infectiv-
ity, for example due to self-imposed quarantine or practise of
better hygiene can raise the threshold for disease invasion even if
awareness does not spread in the population. The same holds if
those infected spread the disease for shorter periods, for example
because they take medication to recover quicker. A longer duration
of immunity of aware recovered individuals, on the other hand,
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lowers the disease prevalence in the endemic equilibrium, yet it
does not change the invasion conditions. As we have shown
previously, such effects on the invasion threshold can be observed
in a well-mixed population only if awareness does not deteriorate
as it spreads through the population (Funk et al., 2009).

A second effect is the deceleration of the spread of a disease as
it approaches equilibrium. In the initial phase of the outbreak,
local correlations between disease and awareness can be
important. If the networks overlap more, the outbreak is slowed
down more effectively, a phenomenon which the mean-field
approximation fails to capture, and which is particularly pro-
nounced if the spread of awareness is nearly critical. If awareness
spreads sufficiently to establish itself in the population on a larger
scale, its initial impact on an outbreak is largely determined by its
relative speed with respect to the spreading disease.

Part of the resulting structure of equilibria is similar to what
has previously been found for the interaction between two
pathogens, where one provides immune enhancement, i.e.
improved immune response to the other (Vasco et al., 2007). In
addition, we have shown both the use and limitations of using
pair approximation to describe the resulting interaction, espe-
cially as potential difference in the contact structures underlying
the spread of the representative pathogen comes into play. While
the pair approximation allowed for the study of situations of
varying network overlap, it necessitated an automated procedure
to generate the vast number of equations required. At the same
time, the system became so complex that it was almost
completely opaque to deeper analysis.

To conclude, we have investigated a simple model for the
contemporaneous spread of two processes, where spreading
awareness can inhibit the spread of a disease. A systematic
investigation of the different possible consequences for the spread
of the pathogen yielded the impact on the course of the disease
when parts of the population change their behaviour as a result of
becoming aware to the presence of the disease. The methods
developed here, however, are by no means limited to this
particular case, and should provide a useful set of tools for any
investigation of multiple and interacting spreading processes,
whether it be rumours, opinions, pathogens or multiple strains of
the same pathogen.
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Appendix A. Level of awareness generated by sources

Including infecteds as sources of awareness, the equation
determining the awareness dynamics reads

_N þ ¼ aNþ
N�
N
�lNþ þoI�: ð22Þ

Substituting N� =N�N+ and solving for _N þ ¼ 0 yields the two
equilibria

Nþ ¼N
1

2
1�

l
a

� �
7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
1�

l
a

� �2

þ
o
a

I�
N

s2
4

3
5 ð23Þ

subject to the equilibrium value of I� which can be determined
only from the full system of ODEs (3). If the second summand
under the square root of Eq. (23) is smaller than the first, or

o
a

I�
N

t
1

4
1�

l
a

� �2

; ð24Þ

Eq. (23) is well approximated by expanding around
ðoI�Þ=ðaNÞ � 0, to first order

Nþ ¼N
1

2
7

1

2

� �
1�

l
a

� �
þ

o
ja�lj

I�
N
þo

oI�
aN

� �2
" #

; ð25Þ

with the minus sign yielding a stable and positive equilibrium for
Ra

0o1 and the positive sign for Ra
041. Therefore, if R0

a is
sufficiently different from 1, the contribution of sources is
awareness is approximately

No
þ �

o
ja�lj

I�
N
: ð26Þ

If, on the other hand, the first summand under the square root of
Eq. (23) is greater than the first, or if Ra

0 � 1, and

o
a

I�
N

\
1

4
1�

l
a

� �2

; ð27Þ

a better approximation can be obtained by expanding around
ð1=2Þð1�l=aÞ, yielding

Nþ ¼N
1

2
1�

l
a

� �
þ

ffiffiffiffiffiffiffiffiffiffi
o
a

I�
N

r
þo

1

2
1�

l
a

����
����

� �2
" #

; ð28Þ

such that the contribution of awareness is

No
þ ¼N

ffiffiffiffiffiffiffiffiffiffi
o
a

I�
N

r
: ð29Þ

Appendix B. Mean-field equilibria

Setting the derivatives to zero in the system of Eqs. (3), we find
the following equilibria:

B.1. All unaware and susceptible

S� ¼N; Sþ ¼ I� ¼ Iþ ¼ R� ¼ Rþ ¼ 0: ð30Þ

The corresponding eigenvalues are

x1 ¼ 0;

x2 ¼ a�l;

x3 ¼�d;

x4 ¼�fd�l;

x5 ¼
1
2ðb�ðeþ1Þg�l�o�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðbþðe�1Þgþl�oÞ2þ4sIbo

q
Þ;

x6 ¼
1
2ðb�ðeþ1Þg�l�oþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðbþðe�1Þgþl�oÞ2þ4sIbo

q
Þ: ð31Þ

Eigenvalues with positive real part, as associated with instability,
can arise if a4l (eigenvalue x2), or if (eigenvalue x6)

0o ðbþðe�1Þgþl�oÞ2þ4sIbo�ðb�ðeþ1Þg�l�oÞ2;

0o ðb�g�oÞðegþlÞþsIbo;

0ob 1þsI
o

egþl

� �
�g�o; ð32Þ

which, with Rd
0 ¼ b=g yields inequalities (9) and (11).



ARTICLE IN PRESS

S. Funk et al. / Journal of Theoretical Biology 264 (2010) 501–509508
B.2. No infection, awareness endemic

S� ¼
l
a

N; Sþ ¼ 1�
l
a

� �
N; I� ¼ Iþ ¼ R� ¼ Rþ ¼ 0: ð33Þ

The corresponding eigenvalues are

j1 ¼ 0;

j2 ¼ l�a;

j3 ¼
1
2 �a�ð1þfÞdþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaþð1�fÞdÞ2�4ð1�fÞdl

q� �
;

j4 ¼
1
2 �a�ð1þfÞd�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaþð1�fÞdÞ2�4ð1�fÞdl

q� �
; ð34Þ

and another pair of eigenvalues which are too complex to offer
straightforward interpretation, for which reason we state them
only under the scenarios used in the main text. Besides these, the
only eigenvalue which can have positive real part is j2, if l4a.
Since we assume awareness to prolong the duration of immunity,
fo1, and therefore j3o0 and j4o0.
�
 Reduced susceptibility

0rsSo1; sI ¼ e¼f¼ 1 ð35Þ

yields

j5 ¼ sSb�gþð1�sSÞb
l
a ;

j6 ¼�a�g�o; ð36Þ

with instability following if inequality (8) holds.

�
 Reduced infectivity

0rsI o1; sS ¼ e¼f¼ 1 ð37Þ

yields two more eigenvalues which are tedious to write down
but from which inequality (10) follows.

�
 Shorter duration of infection

e41; sS ¼ sI ¼f¼ 1 ð38Þ

yields two more eigenvalues which again are tedious to write
down but from which inequality (12) follows.

�
 Longer duration of immunity

0rfo1; sS ¼ sI ¼ e¼ 1 ð39Þ

yields

j5 ¼ b�g;

j6 ¼�a�g�o; ð40Þ

which do not change the invasion conditions from a model
without awareness.

B.3. All unaware, infection endemic

As discussed in the main text, in this equilibrium there is no
awareness at all only if o¼ 0. In that case,

S� ¼
g
b

N; I� ¼
b�g
b

d
gþd ; R� ¼

b�g
b

g
gþd ; Sþ ¼ Iþ ¼ Rþ ¼ 0

ð41Þ

and the eigenvalues are

Z1 ¼ 0;

Z2 ¼ a�l;
Z3 ¼
1

2
�
ðbþdÞd
gþd

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðbþdÞd
gþd

� �2

�4ðb�gÞd

s0
@

1
A;

Z4 ¼
1

2
�
ðbþdÞd
gþd þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðbþdÞd
gþd

� �2

�4ðb�gÞd

s0
@

1
A; ð42Þ

and two more eigenvalues which are too complicated to allow for
simple insights but can be shown to be greater than 0 only if g4b,
which also holds for Z4, while Z3 is always less than 0. The other
possibility for instability can be found in Z2, which becomes
greater than 0 if l4a.

B.4. Infection and awareness both endemic

While equilibria with both infection and awareness spreading
can be observed in numerical simulations, we did not find
corresponding simple analytic expressions. However, as the
invasion thresholds to the other areas in the parameter space
have been identified, little additional insight could be expected
here.
Appendix C. Pair approximation

We here derive and state the equations obtained by closing
the system at the level of pairs. In principle, one needs to
distinguish between three different types of contacts for each pair
of states: those describing contacts which have a disease link only
but cannot spread awareness, those that spread awareness but
cannot spread the disease, and lastly those that can spread both.
We here employ the simplified notations [y]d and [y]a to
describe all state pairs being able to spread disease and
awareness, respectively, irrespective of whether they also spread
the other (see Fig. 5). We then approximate the number of disease
contacts of a given pair of states which can also spread awareness
by multiplication with

qajd ¼
jEd \ Eaj

jEdj
; ð43Þ

where jEdj is the total number of edges on the disease network
and jEd \ Eaj the number of edges pertaining to both networks.
The fraction qajd therefore gives the probability of a randomly
chosen pair of neighbours with a disease edge between them to
also be able to spread awareness. Analogously, we define

qdja ¼
jEd \ Eaj

jEaj
; ð44Þ

which we will use to approximate the number of awareness
contacts of a given pair of state which can also spread the disease.
Thus, if disease and awareness contacts are completely distinct
and the two networks share no edges at all, qajd ¼ qdja ¼ 0 because
Ed \ Ea ¼ |. Moreover, qdja ¼ 1 if EaDEd and qajd ¼ 1 if EdDEa. If all
contacts can spread both processes and the two networks overlap
completely, qajd ¼ 1 and qdja ¼ 1. Note, however, that this measure
is not symmetric and generally qajdaqdja (Fig. 6).

To close the system at the level of pairs, we approximate state
triples using a pair approximation framework (Levin and Durrett,
1996). We use ½ABC�xy to denote the number of triples in states A, B

and C, where A and B are connected by an edge of type x and B and
C are connected by an edge of type y, x and y standing for either d

or a (see Fig. 5). Following Keeling (1999), the pair approximation
then yields

½ABC�xy �
ky�qyjx

ky

½AB�x½BC�y

B
¼ zxy ½AB�x½BC�y

B
; ð45Þ
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Fig. 5. Possible pairs and triples as contained in the quantities indicated in the column headers. Solid lines indicate disease (d) edges and dashed lines awareness (a) edges.

The term ½ABC�da denotes the number of connected triples (in states A, B and C), where A and B are connected by at least a d-edge, and B and C are connected by at least an a-

edge. The figure shows all possible connected triples that are counted by this term, and the same for other terms.

kd = 4, ka = 3

qa|d = 1
2

, qd|a =
2
3

Fig. 6. Example of a small network with qdja aqajd . Solid lines indicate disease

edges and dashed lines awareness edges.
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where kd ¼ jEdj=N and ka ¼ jEaj=N are the average number of
connections of each individual on the disease and awareness
network, respectively, and

zxy
�

ky�qyjx

ky
ð46Þ

is a correctional factor because A and C cannot be the same node.
Note that the consistency condition

½ABC�xy ¼ ½CBA�yx ð47Þ

implies

qyjxkx ¼ qxjyky ¼
jEd \ Eaj

N
; ð48Þ

which always holds according to Eq. (44).
Appendix D. Supplementary data

Supplementary data associated with this article can be found
in the online version at 10.1016/j.jtbi.2010.02.032.
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